精英家教网 > 高中数学 > 题目详情
如图,已知曲线C:
x2
a2
+y2=1
(a>0),曲线C与x轴相交于A、B两点,直线l过点B且与x轴垂直,点S是直线l上异于点B的任意一点,线段SA与曲线C交于点T,线段TB与以线段SB为直径的圆相交于点M.
(I)若点T与点M重合,求
AT
AS
的值;
(II)若点O、M、S三点共线,求曲线C的方程.
分析:(I)设T(x0,y0),S(a,y1),由点A,T,S共线,确定直线方程,求得S的坐标,利用点T与点M重合时,有BT⊥AS,kSA•kBT=-1,得a的值,再利用
AT
AS
=AB2,即可求得结论;
(II)以线段SB为直径的圆相交于点M点,又O、M、S三点共线,知BM⊥OS,∴BT⊥OS,由此可求a的值,从而可得曲线C的方程.
解答:解:(I)设T(x0,y0),S(a,y1),则
x02
a2
+y02=1
,所以y02=1-
x02
a2

由点A,T,S共线有:
y0-0
x0+a
=
y1-0
a+a
,得:y1=
2a
x0+a
y0
,即S(a,
2a
x0+a
y0

当点T与点M重合时,有BT⊥AS,kSA•kBT=
y0
x0+a
×
y0
x0-a
=-1,得a=1.
AT
AS
=AB2=(2a)2=4;
(II)以线段SB为直径的圆相交于点M点,又O、M、S三点共线,知BM⊥OS,∴BT⊥OS
∴kSO•kBT=
2a
x0+a
y0
a
×
y0
x0-a
=-1,∴a2=2
∴所求曲线C的方程为
x2
2
+y2=1
点评:本题考查椭圆的标准方程,考查向量知识的运用,解题的关键是确定a的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C:y=
1
x
Cn:y=
1
x+2-n
(n∈N*)
.从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1).设x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求数列{an}的通项公式;
(III)设△PiQiQi+1(i∈N*)和面积为Si,记f(n)=
n
i=1
Si
,求证f(n)<
1
6
.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C:y=
1
x
在点P(1,1)处的切线与x轴交于点Q1,过点Q1作x轴的垂线交曲线C于点P1,曲线C在点P1处的切线与x轴交于点Q2,过点Q2作x轴的垂线交曲线C于点P2,…,依次得到一系列点P1、P2、…、Pn,设点Pn的坐标为(xn,yn)(n∈N*).
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)求三角形OPnPn+1的面积S△OPnPn+1
(Ⅲ)设直线OPn的斜率为kn,求数列{nkn}的前n项和Sn,并证明Sn
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C:y=
1
x
,Cny=
1
x+2-n
(n∈N*).从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再过点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1)设,x1=1,an=xn+1-xn,bn=yn -yn+1
(1)求点Q1、Q2的坐标;
(2)求数列{an} 的通项公式;
(3)记数列{an•yn+1} 的前n项和为Sn,求证sn
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:已知曲线C:在点P(1,1)处的切线与x轴交于点Q1,再过Q1点作x轴的垂线交曲线C于点P1,再过P1作C的切线与x轴交于点Q2,依次重复下去,过Pn(xn,yn)作C的切线与x轴交于点Qn(xn+1,O).
(1)求数列{xn}的通项公式;
(2)求△OPnPn+1的面积;
(3)设直线OPn的斜率为kn,求数列nkn的前n项和Sn,并证明Sn
79

查看答案和解析>>

同步练习册答案