精英家教网 > 高中数学 > 题目详情
设函数f(x)=
e1-x,x≤2
1-lnx,x>2
,则满足f(x)≤1的x的取值范围是(  )
分析:由不等式f(x)≤1可得①
x≤2
e1-x≤1
,或②
x>2
1-lnx≤1
.分别求出①、②的解集,再取并集,即得所求.
解答:解:∵函数f(x)=
e1-x,x≤2
1-lnx,x>2
,则由不等式f(x)≤1可得①
x≤2
e1-x≤1
,或②
x>2
1-lnx≤1

解①可得,1≤x≤2 解②可得 x>2.
综上可得 x的取值范围是[1,+∞),
故选C.
点评:本题主要考查指数不等式对数不等式的解法,指数函数和对数函数的单调性及特殊点,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-1-lnx.
(1)求函数f(x)的最小值;
(2)求证:当n∈N*时,e1+
1
2
+
1
3
+…+
1
n
>n+1

(3)对于函数h(x)和g(x)定义域上的任意实数x,若存在常数k,b,使得不等式h(x)≥kx+b和g(x)≤kx+b都成立,则称直线y=kx+b是函数h(x)与g(x)的“分界线”.设函数h(x)=
1
2
x2
,g(x)=e[x-1-f(x)],试问函数h(x)与g(x)是否存在“分界线”?若存在,求出常数k,b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx.
(I)证明函数g(x)=f(x)-
2(x-1)
x+1
在x∈(1,+∞)上是单调增函数;
(II)若不等式1-x2≤f(e1-2x)+m2-2bm-2,当b∈[-1,1]{
1
Sn-S1
}(n∈N*,n≥3)
时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•朝阳区二模)已知函数f(x)=ex-ex.
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)求证:e1+
1
2
+
1
3
+…+
1
n-1
+
1
n
>n+1
(n∈N*);
(Ⅲ)对于函数h(x)与g(x)定义域上的任意实数x,若存在常数k,b,使得h(x)≥kx+b和g(x)≤kx+b都成立,则称直线y=kx+b为函数h(x)与g(x)的“分界线”.设函数h(x)=f(x)-ex+ex+
1
2
x2
,g(x)=elnx,h(x)与g(x)是否存在“分界线”?若存在,求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案