精英家教网 > 高中数学 > 题目详情

【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为赞成高考改革方案与城乡户口有关”?

赞成

不赞成

合计

城镇居民

农村居民

合计

P(K2k0

0.10

0.05

0.005

k0

2.706

3.841

7.879

注: 其中

(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为x,试求x的分布列及数学期望E(x).

【答案】(1)表见解析,没有把握;(2)分布列见解析,期望为1.8.

【解析】试题分析:1)完成列联表,求出从而我们没有的把握认为”赞成高考改革方案与城乡户口有关”;2)用样本的频率估计概率,随机在全省不赞成高考改革的家长中抽中城镇户口家长的概率为抽中农村户口家长的概率为 的可能取值为0123,由此能求出的分布列和

试题解析:(1)完成2×2列联表,如下:

赞成

不赞成

合计

城镇居民

30

15

45

农村居民

45

10

55

合计

75

25

100

代入公式,得观测值:

∴我们没有的把握认为赞成高考改革方案与城乡户口有关

2)用样本的频率估计概率,随机在全省不赞成高考改革的家长中抽中城镇户口家长的概率为抽中农村户口家长的概率为span> 的可能取值为0123

的分布列为:

X

0

1

2

3

P

0.064

0.288

0.432

0.216

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ.

(Ⅰ)求C的参数方程;

(Ⅱ)若点A在圆C上,点B(3,0),求AB中点P到原点O的距离平方的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线yx+ln x在点(1,1)处的切线与曲线yax2+(a+2)x+1相切,则a________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856289)[选修4-4:坐标系与参数方程]

直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线l的参数方程为: (t为参数) .

(Ⅰ)写出圆C和直线l的普通方程;

(Ⅱ)点P为圆C上动点,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“扶贫帮困”是中华民族的传统美德,某校为帮扶困难同学,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球七个,红球三个,每位献爱心的参与者投币20元有一次摸奖机会,一次性从箱子中摸球三个(摸完球后将球放回),若有一个红球,奖金10元,两个红球奖金20元,三个全是红球奖金100元.

(1)求献爱心参与者中将的概率;

(2)若该次募捐900位献爱心参与者,求此次募捐所得善款的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gsinxcosxsin2x,将其图象向左移个单位,并向上移个单位,得到函数facos2b的图象.

(Ⅰ)求实数ab 的值;

(Ⅱ)设函数φgfx,求函数φ的单调递增区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856299)已知双曲线 (a>0,b>0)的左、右焦点分别是F1F2,点P是其上一点,双曲线的离心率是2,若△F1PF2是直角三角形且面积为3,则双曲线的实轴长为(  )

A. 2 B. C. 2或 D. 1或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某读者协会为了了解该地区居民睡前看书的时间情况,从该地区睡前看书的居民中随机选取了n人进行调查,现将调查结果进行统计得到如图所示的频率分布直方图.则下列说法正确的是(  )

A. 睡前看书时间介于40~50分钟的频率为0.03

B. 睡前看书时间低于30分钟的频率为0.67

C. 若n=1000,则可估计本次调查中睡前看书时间介于30~50分钟的有67人

D. 若n=1000,则可估计本次调查中睡前看书时间介于20~40分钟的有600人

查看答案和解析>>

同步练习册答案