精英家教网 > 高中数学 > 题目详情
已知a∈{3,4,6},b∈{1,2,7,8},r∈{5,9},则方程(x-a)2+(y-b)2=r2可表示(  )个不同的圆.
A.36B.24C.12D.6
对于两个圆来说,只要它们的圆心不同,或半径不同,两个圆就是平面上不同的圆,
集合{3,4,6}中的任意一个数都可以作为圆心的横坐标,集合{1,2,7,8,}中的任意一个数都可以作为圆心的纵坐标,所以组成的圆心总数为3×4=12种,而半径可以从{5,9}中任选一个,有两种方法,所以,方程(x-a)2+(y-b)2=r2可表示12×2=24个不同的圆.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈{3,4,6},b∈{1,2,7,8},r∈{5,9},则方程(x-a)2+(y-b)2=r2可表示(  )个不同的圆.

查看答案和解析>>

科目:高中数学 来源: 题型:013

已知a∈(346)6∈{0278)r∈{189},圆方程(x-a)2(y-b)2r2可表示不同圆的个数为( )

A36     B10      C30   D21

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知a∈{3,4,6},b∈{1,2,7,8},r∈{5,9},则方程(x-a)2+(y-b)2=r2可表示个不同的圆.


  1. A.
    36
  2. B.
    24
  3. C.
    12
  4. D.
    6

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省西安电子科技中学高二(下)第二次月考数学试卷(理科)(解析版) 题型:选择题

已知a∈{3,4,6},b∈{1,2,7,8},r∈{5,9},则方程(x-a)2+(y-b)2=r2可表示( )个不同的圆.
A.36
B.24
C.12
D.6

查看答案和解析>>

同步练习册答案