精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,设A,B,C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得数学公式,则(λ-3)22的取值范围是


  1. A.
    (2,9)
  2. B.
    (4,10)
  3. C.
    数学公式
  4. D.
    (2,+∞)
D
分析:由得μ2=1+λ2-2λ,从而可构建函数f(λ)=(λ-3)22,即可求得(λ-3)22的取值范围.
解答:因为A,B,C互异,所以-1<<1,
得μ2=1+λ2-2λ
则f(λ)=(λ-3)22=2λ2-6λ-2λ2+10>2λ2-8λ+10≥2.
f(λ)=(λ-3)22=2λ2-6λ-2λ2+10<2λ2-4λ+10,无最大值,
∴(λ-3)22的取值范围是(2,+∞).
故选D.
点评:本题考查向量知识的运用,考查函数的最值,确定函数解析式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案