精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=x2(lga2)xlgbf(1)=2,当x∈Rf(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?

【答案】x=2时,f(x) min=3

【解析】主要考查对数运算、二次函数、对数函数的图象和性质。

解:由f(1)=2 ,得:f(1)=1(lga2)lgb=2,解之lgalgb=1

=10a=10b

又由x∈Rf(x)≥2x恒成立.知:x2(lga2)xlgb≥2x,即x2xlgalgb≥0,对x∈R恒成立,

Δ=lg2a4lgb≤0,整理得(1lgb)24lgb≤0

(lgb1)2≤0,只有lgb=1,不等式成立.

b=10∴a=100

∴f(x)=x24x1=(2x)23

x=2时,f(x) min=3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体中,分别为 棱上的点. 已知下列判断:

平面在侧面上 的正投影是面积为定值的三角形;在平面内总存在与平面平行的直线;平 面与平面所成的二面角(锐角)的大小与点的位置有关,与点的位置无关.

其中正确判断的个数有

(A)1个 (B)2个 (C)3个 (D)4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是 ( )
A.当x>0且x≠1时,
B.当x>0时,
C.当x≥2时,的最小值为2
D.当0<x≤2时,无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是二次函数,其函数图像经过(0,2),时取得最小值1.

(1)求的解析式.

(2)求在[kk+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则满足f(f(a))=2f(a)a的取值范围是(  )

A. B. [0,1]

C. D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,2an=an﹣1+an+1(n≥2),且a2=10,a5=﹣5,求{an}前n项和Sn的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为等差数列{an}的前n项和,S6=51,a5=13.
(1)求数列{an}的通项公式;
(2)数列{bn}的通项公式是bn= , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日是第二十七届“世界水日”,日是第三十二届“中国水周”.我国纪念年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取两个小区各户家庭,记录他们月份的用水量(单位:)如下表:

小区家庭月用水量

小区家庭月用水量

1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?

2)从用水量少于的家庭中,两个小区各随机抽取一户,求小区家庭的用水量小区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某三棱锥的三视图如图所示,图中的3个直角三角形的直角边长度已经标出,则在该三棱锥中,最短的棱和最长的棱所在直线的成角余弦值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案