精英家教网 > 高中数学 > 题目详情

【题目】已知函数是自然对数的底数,).

(1)求函数的单调递增区间;

(2)若为整数,,且当时,恒成立,其中的导函数,求的最大值.

【答案】(1)当时,的增区间为;当时,的增区间为;(2)2.

【解析】

试题分析:(1)求单调增区间,只要解不等式,它的解集区间就是所求增区间;(2)不等式恒成立,不等式具体化为,由于,因此又可转化为,这样小于的最小值,因此下面只要求的最小值.,接着要讨论的零点,由于上单调递增,且,因此上有唯一零点,即上存在唯一的零点,设其为,则,可证得为最小值,,从而整数的最大值为2.

试题解析:(1.

,则恒成立,所以,在区间上单调递增.........2

,当时,上单调递增.

综上,当时,的增区间为;当时,的增区间为..... 4

2)由于,所以,

时,,故————① 6

,则

函数上单调递增,而

所以上存在唯一的零点,

上存在唯一的零点. 8

设此零点为,则.

时,;当时,

所以,上的最小值为.可得10

所以,由于式等价于.

故整数的最大值为2. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:

x

15.0

25.58

30.0

36.6

44.4

y

39.4

42.9

42.9

43.1

49.2

(1)x为解释变量,y为预报变量,作出散点图;

(2)yx之间的线性回归方程,对于基本苗数56.7预报其有效穗;

(3)计算各组残差,并计算残差平方和;

(4)R2,并说明残差变量对有效穗的影响占百分之几.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其

范围为[0,10],分别有五个级别:T[0,2)畅通;T[2,4)基本畅通; T[4,6)轻度拥堵; T[6,8)中度拥堵;T[8,10]严重拥堵晚高峰时段(T2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.

(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?

(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为(  )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非空数集A如果满足:①0A;②若对x∈A,有 ∈A,则称A是“互倒集”.给出以下数集:
①{x∈R|x2+ax+1=0}; ②{x|x2﹣4x+1<0};③{y|y= }.
其中“互倒集”的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要制作一个容积为2π m3的圆柱形储油罐(有盖),为使所用的材料最省,它的底面半径与高分别为 ( )

A. 0.5 m,1 m B. 1 m,1 m

C. 1 m,2 m D. 2 m,2 m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=alnx+ + x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中,前三项系数的绝对值依次成等差数列.

(1)求展开式中的常数项;

(2)求展开式中所有整式项.

查看答案和解析>>

同步练习册答案