【题目】正项等比数列{an}中,存在两项am、an使得=4a1 , 且a6=a5+2a4 , 则的最小值是( )
A.
B.2
C.
D.
科目:高中数学 来源: 题型:
【题目】等差数列{an}的公差d≠0满足成等比数列,若=1,Sn是{}的前n项和,则的最小值为________.
【答案】4
【解析】
成等比数列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.
∵成等比数列,a1=1,
∴= ,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴==n+1+﹣2≥2﹣2=4,
当且仅当n+1=时取等号,此时n=2,且取到最小值4,
故答案为:4.
【点睛】
本题考查了等差数列的通项公式、前n项和公式,等比中项的性质,基本不等式求最值,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.
【题型】填空题
【结束】
17
【题目】设是公比为正数的等比数列,,
(1)求的通项公式;
(2)设是首项为1,公差为2的等差数列,求数列的前项和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.
.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE;(III)若PB与底面所成的角为600, AB=2a,求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站(其中在上),现从仓库向和中转站分别修两条道路,已知,且.
(1)求关于的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元,两条道路造价为30万元,问:取何值时,该公司建设中转站围墙和两条道路总造价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+ )升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“红灯停,绿灯行”,这是我们每个人都应该也必须遵守的交通规则.凑齐一拨人就过马路﹣﹣不看交通信号灯、随意穿行交叉路口的“中国式过马路”不仅不文明而且存在很大的交通安全隐患.一座城市是否存在“中国式过马路”是衡量这座城市文明程度的重要指标.某调查机构为了了解路人对“中国式过马路”的态度,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性 | 女性 | 合计 | |
反感 | 10 | ||
不反感 | 8 | ||
合计 | 30 |
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此列联表数据判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(2)若从这30人中的女性路人中随机抽取2人参加一项活动,记反感“中国式过马路”的人数为X,求X的分布列及其数学期望.
附:,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于向量a,b,e及实数x,y,x1,x2,,给出下列四个条件:
①且; ②
③且唯一; ④
其中能使a与b共线的是 ( )
A.①②
B.②④
C.①③
D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的反函数为 ,等比数列{an}的公比为2,若 ,则 =( )
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com