精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,已知A,B,C是圆O上三个点,AB弧等于BC弧,D为弧AC上一点,过点A做圆O的切线交BD延长线于E
(1)求证:AB平分∠CAE;
(2)若AD•BE=2
6
,∠ADE=30°
,求△ABE的面积.
分析:(1)根据AB弧等于BC弧得∠BAC=∠BCA,再由弦切角定理得到∠EAB=∠BCA,所以∠EAB=∠BAC,即AB平分∠CAE;
(2)由弦切角定理得到∠EAB=∠BDA,结合∠AEB=∠DEA得到△AEB∽△DEA,可得AB•AE=AD•BE=2
6
,再根据∠EAB=∠ADE=30°,利用三角形的面积公式加以计算,即可得到△ABE的面积.
解答:解:(1)∵⊙O中,AB弧等于BC弧,∴∠BAC=∠BCA,
又∵AE切于⊙O点A,∴∠EAB=∠BCA,
因此,∠EAB=∠BAC,即AB平分∠CAE;
(2)∵AE切于⊙O点A,∴∠EAB=∠BDA,
又∵∠AEB=∠DEA,
∴△AEB∽△DEA,可得
AD
AB
=
AE
BE
,得AB•AE=AD•BE=2
6

∵∠EAB=∠ADE=30°,
∴△ABE的面积S=
1
2
AB•AEsin∠EAB=
1
2
×2
6
×
1
2
=
6
2
点评:本题给出圆的切线,在已知弧相等的情况下证明AB平分∠CAE,并求三角形的面积.着重考查了弦切角定理、圆周角定理、相似三角形的性质与判定和三角形的面积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知A,B,C是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三点,其中点A的坐标为(2
3
,0),BC
过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求点C的坐标及椭圆E的方程;
(Ⅱ)若椭圆E上存在两点P,Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量
PQ
AB
是否共线,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知A、B、C是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)上的三点,,BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知A、B、C是长轴长为4的椭圆上的三点,点A是长轴的一个端点,BC过椭圆中心O,且
AC
BC
=0
,|BC|=2|AC|.
(I)建立适当的坐标系,求椭圆方程;
(II)如果椭圆上有两点P、Q,使∠PCQ的平分线垂直于AO,证明:存在实数λ,使
PQ
AB

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知A、B、C是椭圆E:=1(a>b>0)上的三点,其中点  

A的坐标为(2,0),BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.

(1)求点C的坐标及椭圆E的方程;

(2)若椭圆E上存在两点P、Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量是否共线,并给出证明.

查看答案和解析>>

同步练习册答案