精英家教网 > 高中数学 > 题目详情
8.圆x2+y2=4上恰有两个点到3x-4y+c=0的距离等于1,则c的取值范围为(-15,-5)∪(5,15).

分析 由条件求出圆心,求出半径,由数形结合,只需圆心到直线的距离d大于半径与1的差小于半径与1的和即可.

解答 解:由已知可得:圆半径为2,圆心为(0,0),故圆心(0,0)到直线3x-4y+c=0的距离为:d=$\frac{|c|}{5}$
如图中的直线m恰好与圆由3个公共点,此时d=OA=2-1,
直线n与圆恰好有1个公共点,此时d=OB=2+1=3,当直线介于m、n之间满足题意.
故要使圆x2+y2=4上恰有两个点到直线4x-3y+c=0的距离为1,
只需d大于1小于3,即1<$\frac{|c|}{5}$<3,
解得:-15<c<-5,或5<c<15
故c的取值范围是(-15,-5)∪(5,15).
故答案为:(-15,-5)∪(5,15).

点评 本题考查圆与直线的位置关系,数形结合得出数量关系是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$(b1,b2),定义一种运算:$\overrightarrow{a}$?$\overrightarrow{b}$=(a1b1,a2b2),已知$\overrightarrow{m}$=(2,$\frac{1}{2}$),$\overrightarrow{n}$=($\frac{π}{3}$,0),且点P(x,y),在函数y=sinx的图象上运动,点Q在函数y=f(x)的图象上运动,且$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O为坐标原点),则函数y=f(x)的最大值A和最小正周期T分别为 (  )
A.A=2,T=πB.A=2,T=4πC.A=$\frac{1}{2}$,T=πD.A=$\frac{1}{2}$,T=4π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$则z=2x+y的取值范围是(  )
A.[-3,11]B.[-3,13]C.[-5,13]D.[-5,11]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:y2=2px(p>0)的焦点为F,A(4,1)是抛物线内一点,P在抛物线上,PA+PF的最小值为5.
(1)求抛物线方程;
(2)一条直线与抛物线相交于A、B(其中A在第一象限)与x轴、y轴相交于C、D,且|AC|,|CB|,|BD|的比为3:2:1,若这样的直线存在,求出所有符合条件的直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数字“2015”中,各位数字相加和为8,称该数为“如意四位数”,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的“如意四位数”有23个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在(x-1)4-(x-1)5+(x-1)6-(x-1)7的展开式中,含x3的项的系数是-69.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过抛物线y2=x的焦点F的直线l交抛物线于A,B两点,且直线l的倾斜角θ≥$\frac{π}{4}$,点A在x轴上方,则|FA|的取值范围是(  )
A.($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$]B.($\frac{1}{4}$,1]C.($\frac{1}{4}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某容量为180的样本的频率分布直方图共有n(n>1)个小矩形,若第一个小矩形的面积等于其余n-1的小矩形的面积之和的$\frac{1}{5}$,则第一个小矩形对应的频数是30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从A、B、C、D、E5名短跑运动员中任选4名,排在标号分别为1、2、3、4的跑道上,则不同的排法有(  )
A.24种B.48种C.120种D.124种

查看答案和解析>>

同步练习册答案