精英家教网 > 高中数学 > 题目详情
13.方程2x+x=0的解的个数是(  )
A.0B.1C.2D.3

分析 易知函数f(x)=2x+x在R上是增函数且连续,结合函数的零点的判定定理确定答案.

解答 解:易知函数f(x)=2x+x在R上是增函数且连续,
f(-1)=$\frac{1}{2}$-1<0,f(0)=1+0>0,
故函数f(x)=2x+x有且只有一个零点,
故选B.

点评 本题考查了方程的根与函数的零点的关系应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知定义在R上函数f(x)的值域是(-∞,0],并且函数f(x)单调,则方程f3(x)-3f(x)-1=0的解的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:|$\frac{x-1}{2x-3}$-1|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设动点M到两个定点F1(-$\sqrt{13}$,0),F2($\sqrt{13},0$)的距离之差等于4,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),x∈[0,π],则f(x)的单调递增区间为[0,$\frac{π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=e|x| (X∈[a,b])的值域是[1,e2],那么实数a,b应满足什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=5$\sqrt{3}$sinxcosx+5cos2x-$\frac{5}{2}$.
(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)当$\frac{π}{6}$≤x≤$\frac{π}{2}$时,若f(x)=2,求函数f(x-$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{x+a}{x+1}$在(-∞,-1),(-1,+∞)上单调递增,则实数a的取值范围(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{3-|x|,x≤3}\\{(x-3)^{2},x>3}\end{array}\right.$,函数g(x)=m-f(3-x),其中m∈R,若函数y=f(x)-g(x)至少有4个零点,则实数m的取值范围是[$\frac{11}{4}$,3).

查看答案和解析>>

同步练习册答案