精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.

(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.

【答案】
(1)

解:椭圆 =1(a>b>0)的焦距为2c,

由CF1⊥x轴.则C(﹣c,y0),y0>0,

由C在椭圆上,则y0= ,则C(﹣c, ),

由OC∥AB,则﹣ =kOC=kAB=﹣ ,则b=c,

e= = =

e的值


(2)

解:设D(x1,y1),设

C(﹣c, ),F2(c,0),

=(2c,﹣ ), =(x1﹣c,y1),

,则2c=λ(x1﹣c),﹣ =λy1,则D( c,﹣ ),

由点D在椭圆上,则( )2e2+ =1,整理得:(λ2+4λ+3)e22﹣1,

由λ>0,e2= = =1﹣

≤e≤ ,则 ≤e2 ,则 ≤1﹣

解得: ≤λ≤5,

的取值范围[ ,5]


【解析】(1)由CF1⊥x轴.则C(﹣c, ),根据直线的斜率相等,即可求得b=c,利用离心率公式即可求得e的值;(2)根据向量的坐标运算,求得D点坐标,代入椭圆方程,求得e2= =1﹣ ,由离心率的取值范围,即可求得λ的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

女性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

频数

20

40

80

50

10

男性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

频数

45

75

90

60

30


(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,向量(

,满足.

(1)求角的大小;

(2)设 有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:
完成以下问题:
(Ⅰ)补全频率分布直方图并求nap的值;
(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X)..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数

(1)若,求函数的值域;

(2)设的三个内角所对的边分别为,若A为锐角且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若,求使得成立的的集合;

(2)当时,函数只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数 的单调增区间;
(2)若函数 上的最小值为 ,求 的值.

查看答案和解析>>

同步练习册答案