精英家教网 > 高中数学 > 题目详情

【题目】某工厂共有名工人,已知这名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成万件及以上的工人为优秀员工,现将其分成组,第组、第组、第组、第组、第组对应的区间分别为,并绘制出如图所示的频率分布直方图.

(1)求的值,并求去年优秀员工人数;

(2)选取合适的抽样方法从这名工人中抽取容量为的样本,求这组分别应抽取的人数;

(3)现从(2)中人的样本中的优秀员工中随机选取名传授经验,求选取的名工人在同一组的概率.

【答案】(1),去年优秀员工人数为;(2)用分层抽样,这组分别应抽取的人数依次为;(3).

【解析】

(1)由频率分布直方图中所有小长方形的面积和为1可求得的值,进而可得优秀员工人数.

(2)分层抽样,按比例确定各组应抽取的人数.

(3)列出所有的基本事件数和所求事件包含的基本事件数,由古典概型得出概率.

(1)∵,∴.

去年优秀员工的人数为

(2)用分层抽样比较合适.

组应抽取的人数为

组应抽取的人数为

组应抽取的人数为

组应抽取的人数为

组应抽取的人数为

(3)从(2)中人的样本中的优秀员工中,

组有人,记这人分别为

组有人,记这人分别为.

从这人中随机选取名,所有的基本事件为

共有个基本事件.

选取的名工人在同一组的基本事件有,个,

故所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C经过点,离心率,直线的方程为

(1)求椭圆的方程;

(2)经过椭圆右焦点的任一直线(不经过点)与椭圆交于两点,设直线相交于点,记的斜率分别为,问:是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017915日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50

80

年龄大于50

10

合计

70

100

1)根据已知数据,把表格数据填写完整;

2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?

3)已知在被调查的年龄大于50岁的支持者中有6名女性,其中2名是女教师.现从这6名女性中随机抽取2名,求恰有1名女教师的概率.

附:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈市某公司为了了解用户对其产品的满意度,从南岗区随机调查了40个用户,根据用户对其产品的满意度的评分,得到用户满意度评分的频率分布表.

满意度评分分组

频数

2

8

14

10

6

1)在答题卡上作出南岗区用户满意度评分的频率分布直方图;

南岗区用户满意度评分的频率分布直方图

2)根据用户满意度评分,将用户的满意度评分分为三个等级:

满意度评分

低于70

70分到89

不低于90

满意度等级

不满意

满意

非常满意

估计南岗区用户的满意度等级为不满意的概率;

3)求该公司满意度评分的中位数(保留小数点后两位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015812日天津发生危化品重大爆炸事故,造成重大人员和经济损失.某港口组织消防人员对该港口的公司的集装箱进行安全抽检,已知消防安全等级共分为四个等级(一级为优,二级为良,三级为中等,四级为差),该港口消防安全等级的统计结果如下表所示:

现从该港口随机抽取了家公司,其中消防安全等级为三级的恰有20家.

)求的值;

)按消防安全等级利用分层抽样的方法从这家公司中抽取10家,除去消防安全等级为一级和四级的公司后,再从剩余公司中任意抽取2家,求抽取的这2家公司的消防安全等级都是二级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量的观测值,参照附表,得到的正确结论是( )

0.10

0.05

0.025

2.706

3.841

5.024

A.97.5%以上的把握认为“爱好该项运动与性别有关”

B.97.5%以上的把握认为“爱好该项运动与性别无关”

C.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”

D.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1求函数的单调区间

2探究:是否存在实数使得恒成立若存在求出的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右顶点为,上、下顶点为,记四边形的内切圆为.

(1)求圆的标准方程;

(2)已知圆的一条不与坐标轴平行的切线交椭圆PM两点.

(i)求证:

(ii)试探究是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,侧面⊥底面,底面为直角梯形,//的中点.

(Ⅰ)求证:PA//平面BEF;

(Ⅱ)若PCAB所成角为,求的长;

(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值

查看答案和解析>>

同步练习册答案