精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1 =1(a>b>0)的左、右焦点分别为F1、F2 , 其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程;
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x﹣7y+1=0上,求直线AC的方程.

【答案】解:(I)设点M为(x1 , y1),∵F2是抛物线y2=4x的焦点,
∴F2(1,0);
又|MF2|= ,由抛物线定义知
x1+1= ,即x1=
由M是C1与C2的交点,
∴y12=4x1 , 即y1 ,这里取y1=
又点M( )在C1上,
+ =1,且b2=a2﹣1,
∴9a4﹣37a2+4=0,∴ (舍去),
∴a2=4,b2=3;
∴椭圆C1的方程为:
(II)∵直线BD的方程为:7x﹣7y+1=0,在菱形ABCD中,AC⊥BD,
不妨设直线AC的方程为x+y=m,

∴消去y,得7x2﹣8mx+4m2﹣12=0;
∵点A、C在椭圆C1上,
∴(﹣8m)2﹣4×7×(4m2﹣12)>0,即m2<7,∴﹣ <m<
设A(x1 , y1),C(x2 , y2),
则x1+x2= ,y1+y2=(﹣x1+m)+(﹣x2+m)=﹣(x1+x2)+2m=﹣ +2m=
∴AC的中点坐标为
由菱形ABCD知,点 也在直线BD:7x﹣7y+1=0上,
即7× ﹣7× +1=0,∴m=﹣1,由m=﹣1∈ 知:
直线AC的方程为:x+y=﹣1,即x+y+1=0
【解析】(Ⅰ)设点M为(x1 , y1),由F2是抛物线y2=4x的焦点,知F2(1,0);|MF2|= ,由抛物线定义知x1+1= ,即x1= ;由M是C1与C2的交点,y12=4x1 , 由此能求出椭圆C1的方程.(Ⅱ)直线BD的方程为:7x﹣7y+1=0,在菱形ABCD中,AC⊥BD,设直线AC的方程为x+y=m,由 ,得7x2﹣8mx+4m2﹣12=0.由点A、C在椭圆C1上,知(﹣8m)2﹣4×7×(4m2﹣12)>0,由此能导出直线AC的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2lnx+ . (Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)如果对所有的x≥1,都有f(x)≤ax,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在淘宝网上,某店铺专卖孝感某种特产.由以往的经验表明,不考虑其他因素,该特产每日的销售量y(单位:千克)与销售价格x(单位:元/千克,1<x≤5)满足:当1<x≤3时,y=a(x﹣3)2+ ,(a,b为常数);当3<x≤5时,y=﹣70x+490.已知当销售价格为2元/千克时,每日可售出该特产600千克;当销售价格为3元/千克时,每日可售出150千克.
(1)求a,b的值,并确定y关于x的函数解析式;
(2)若该特产的销售成本为1元/千克,试确定销售价格x的值,使店铺每日销售该特产所获利润f(x)最大(x精确到0.1元/千克).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,三边a,b,c所对应的角分别是A,B,C,已知a,b,c成等比数列.
(1)若 + = ,求角B的值;
(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为数列{an}的前n项和,已知 .则{an}的通项公式an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足sin = =6.
(1)求△ABC的面积;
(2)若c+a=8,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足 若z=x+my的最小值是﹣5,则实数m取值集合是(
A.{﹣4,6}
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2+ax+a)(a∈R) (Ⅰ)求f(x)的单调区间;
(Ⅱ)若a=﹣1,判断f(x)是否存在最小值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

同步练习册答案