精英家教网 > 高中数学 > 题目详情
设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.
(1)(2)+=1

试题分析:(1)直接利用|PF2|=|F1F2|,对应的方程整理后即可求椭圆的离心率e;
(2)先把直线PF2与椭圆方程联立求出A,B两点的坐标以及对应的|AB|两点,进而求出|MN|,再利用弦心距,弦长以及圆心到直线的距离之间的等量关系,即可求椭圆的方程.
解:(1)设F1(﹣c,0),F2(c,0)   (c>0).
由题得|PF2|=|F1F2|,即=2c,整理得2+﹣1=0,得=﹣1(舍),或=
所以e=
(2)由(1)知a=2c,b=c,可得椭圆方程为3x2+4y2=12c2,直线方程PF2为y=(x﹣c).
A,B的坐标满足方程组
消y并整理得5x2﹣8xc=0,
解得x=0,x=,得方程组的解为
不妨设A(c,c),B(0,﹣c).
所以|AB|==c,于是|MN|=|AB|=2c.
圆心(﹣1,)到直线PF2的距离d=
因为d2+=42,所以(2+c)2+c2=16,整理得c=﹣(舍)或c=2.
所以椭圆方程为+=1.
点评:本题主要考查椭圆的方程和几何性质,直线的方程,两点间的距离公式以及点到直线的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若椭圆=1的焦点在x轴上,过点(1,)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆C:的左右焦点分别为,若椭圆C上恰好有6个不同的点,使得为等腰三角形,则椭圆C的离心率取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·厦门模拟]已知椭圆+y2=1,F1,F2为其两焦点,P为椭圆上任一点.则|PF1|·|PF2|的最大值为(  )
A.6B.4C.2D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的左焦点重合,则的值为(   )
A.-8B.-16C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为,且离心率为
(1)求椭圆方程;
(2)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为双曲线C:的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线的某条渐近线于M、N两点,且满足MAN=120o,则该双曲线的离心率为(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当 时,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与椭圆相交于两点,过点轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是          

查看答案和解析>>

同步练习册答案