精英家教网 > 高中数学 > 题目详情
3.代数式sin($\frac{π}{2}$+$\frac{π}{3}$)+cos($\frac{π}{2}$-$\frac{π}{6}$)的值为(  )
A.-1B.0C.1D.$\frac{\sqrt{3}}{2}$

分析 原式利用诱导公式化简,再利用特殊角的三角函数值计算即可得答案.

解答 解:sin($\frac{π}{2}$+$\frac{π}{3}$)+cos($\frac{π}{2}$-$\frac{π}{6}$)=$cos\frac{π}{3}+sin\frac{π}{6}=\frac{1}{2}+\frac{1}{2}=1$.
故选:C.

点评 本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=ax(a>0且a≠1)的图象均过定点(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,$\overrightarrow{b}$=(1,-2),$\overrightarrow{a}$•$\overrightarrow{b}$=-10
(Ⅰ)求向量$\overrightarrow{a}$的坐标;
(Ⅱ)若$\overrightarrow{c}$=(6,-7),求|$\overrightarrow{a}$+$\overrightarrow{c}$|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=cos(ωx-$\frac{π}{3}$)(ω∈N*)图象的一条对称轴是x=$\frac{π}{6}$,则ω的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在平面直角坐标系xOy中,以O为角的顶点,x轴正半轴为始边的角α、β的终边分别与单位圆交于点A,B,若点A的横坐标是$\frac{4}{5}$,点B的纵坐标是$\frac{\sqrt{3}}{2}$.
(1)求cos(α-β)的值;
(2)求$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角α终边上有一点P(x,1),且cosα=-$\frac{1}{2}$,则tanα=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,P,Q分别为双曲线和椭圆上不同于A,B的动点,且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),设AP,BP,AQ,BQ的斜率分别为k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求证:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)设F2′,F2分别为双曲线和椭圆的右焦点,且PF2′∥QF2,试判断k12+k22+k32+k42是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知椭圆$\frac{x^2}{a^2}+{y^2}=1(a>1)$的长轴长是短轴长的2倍,右焦点为F,点B,C分别是该椭圆的上、下顶点,点P是直线l:y=-2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M,记直线BM,BP的斜率分别为k1,k2
(1)当直线PM过点F时,求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值,并确定此时直线PM的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以下四个关于圆锥曲线的命题:
①在直角坐标平面内,到点(-1,2)和到直线2x+3y-4=0距离相等的点的轨迹是抛物线;
②设F1、F2为两个定点,k为非零常数,若|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=k,则P点的轨迹为双曲线;
③方程4x2-8x+3=0的两根可以分别作为椭圆和双曲线的离心率;
④过单位圆O上一定点A作圆的动弦AB,O为坐标原点,若$\overrightarrow{OP}$=($\overrightarrow{OA}$+$\overrightarrow{OB}$),则动点P的轨迹为椭圆.
其中真命题的序号为③.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案