精英家教网 > 高中数学 > 题目详情
如果实数x,y满足等式(x-2)2+y2=1
(1)求y-x的最大值和最小值.
(2)求x2+(y-1)2的最大值和最小值.
分析:(1)设z=y-x,当点(x,y)在圆(x-2)2+y2=1上,则此直线与圆相切时,z取最值,根据圆心到直线的距离等于半径,求得z的值,即为所求.
(2)根据x2+(y-1)2表示点P(x,y)与点A(0,1)间的距离的平方,求出|AC|,再把|AC|加减半径,即得所求.
解答:解:(1)设z=y-x,当点(x,y)在圆(x-2)2+y2=1上,
使直线z=y-x在y轴上截距最大时,z取得最大值;
使直线z=y-x在y轴上截距最小时,z取得最小值.
则当直线x-y+z=0与圆相切时,z取最值,∵圆心C(2,0),半径r=1,
故当z取得最值时,有
|2-0+z|
2
=1
,解得z=±
2
-2

zmax=
2
-2,zmin=-
2
-2
.(6分)
(2)∵x2+(y-1)2表示点P(x,y)与点A(0,1)间的距离的平方.
|AC|=
5
,∴
x2+(y-1)2
的最小值为
5
-1
,最大值为
5
+1
,(10分)
∴x2+(y-1)2的最小值为6-2
5
,最大值为6+2
5
.(12分)
点评:本题主要考查点到直线的距离公式的应用,直线和圆的位置关系,两点间的距离公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果实数x、y满足等式(x-2)2+y2=3,则x+y最大值是
2+
6
2+
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足等式(x-2)2+y2=3,那么
y
x
的最大值是(  )
A、
1
2
B、
3
3
C、
3
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)如果实数x,y满足等式(x-2)2+y2=1,那么
y+3
x-1
的取值范围是
[
4
3
,+∞)
[
4
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆一模)如果实数x,y满足等式(x-2)2+y2=3,那么
y
x
的最大值是
3
3

查看答案和解析>>

同步练习册答案