精英家教网 > 高中数学 > 题目详情

1已知函数,且,

.

(Ⅰ)求的值域

(Ⅱ)指出函数的单调性(不需证明),并求解关于实数的不等式

(Ⅲ)定义在上的函数满足,且当求方程在区间上的解的个数.

(I)值域为

(II)不等式的解集为

(III)上共有502个解


解析:

(Ⅰ)由

   解得,

的值域为

(Ⅱ)函数是减函数,所以,

解得,

所以,不等式的解集为

(Ⅲ)当时,时,

时,

,是以4为周期的周期函数,故的所有解是,

,则

,∴上共有502个解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

1已知函数f(x)=ax+b
1+x2
(x≥0)
g(x)=2
b(1+x2)
,a,b∈R,且g(0)=2,f(
3
)=2-
3

(Ⅰ)求f(x)、g(x)的解析式;
(Ⅱ)h(x)为定义在R上的奇函数,且满足下列性质:①h(x+2)=-h(x)对一切实数x恒成立;②当0≤x≤1时h(x)=
1
2
[-f(x)+log2g(x)]

(ⅰ)求当-1≤x<3时,函数h(x)的解析式;
(ⅱ)求方程h(x)=-
1
2
在区间[0,2012]上的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数(其中,为实数常数).

(1)若,求的值(用表示);

(2)若对于恒成立,求实数m的取值范围(用表示).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省高三第三轮适应性考试理科数学试卷(解析版) 题型:解答题

已知函数,且处的切线斜率为

(1)求的值,并讨论上的单调性;

(2)设函数,其中,若对任意的总存在,使得成立,求的取值范围.

 

查看答案和解析>>

同步练习册答案