精英家教网 > 高中数学 > 题目详情

如图,已知点,函数的图象上的动点轴上的射影为,且点在点的左侧.设的面积为.

(Ⅰ)求函数的解析式及的取值范围;
(Ⅱ)求函数的最大值.

(Ⅰ).
(Ⅱ)当时,函数取得最大值8.

解析试题分析:(Ⅰ)确定三角形面积,主要确定底和高.
(Ⅱ)应用导数研究函数的最值,遵循“求导数,求驻点,讨论驻点两侧导数正负,比较极值与区间端点函数值”.利用“表解法”形象直观,易以理解.
试题解析:(Ⅰ)由已知可得,所以点的横坐标为,              2分
因为点在点的左侧,所以,即.
由已知,所以,                            4分
所以
所以的面积为.              6分
(Ⅱ)                              7分
,得(舍),或.                                8分
函数在定义域上的情况如下:



2


+
0



极大值

                                                              12分
所以当时,函数取得最大值8.                           13分
考点:三角形面积,应用导数研究函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1与l2接通.已知AB = 60m,BC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W.

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设为函数的图象上任意不同两点,若过两点的直线的斜率恒大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求曲线在点处的切线方程;
(2)若无零点,求实数的取值范围;
(3)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)设,证明:在区间内存在唯一的零点;
(Ⅱ)设,若对任意,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求函数的极值与单调区间;
(2)若函数的图象在处的切线与直线平行,求的值;
(3)若函数的图象与直线有三个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数n,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数为奇函数,求a的值;
(2)若函数处取得极大值,求实数a的值;
(3)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校内有一块以为圆心,为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形区域(阴影部分)用于种植学校观赏植物,区域用于种植花卉出售,其余区域用于种植草皮出售.已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.

(1)设(单位:弧度),用表示弓形的面积
(2)如果该校总务处邀请你规划这块土地,如何设计的大小才能使总利润最大?并求出该最大值.
(参考公式:扇形面积公式表示扇形的弧长)

查看答案和解析>>

同步练习册答案