精英家教网 > 高中数学 > 题目详情
15.如图,已知四棱锥P-ABCD,底面ABCD为菱形,且∠DAB=60°,△PAB是边长为a的正三角形,且平面PAB⊥平面ABCD,已知点M是PD的中点.
(Ⅰ)证明:PB∥平面AMC;
(Ⅱ)求直线BD与平面AMC所成角的正弦值.

分析 (Ⅰ)由ABCD为菱形,OB=CD,OM∥PB,由直线PB不在平面AMC内,PB∥PCM;
(Ⅱ)建立空间直角坐标系,求得平面AMC的法向量为$\overrightarrow{n}$,设直线BD与$\overrightarrow{n}$所成的角为θ,则cosθ=$\frac{\overrightarrow{n}•\overrightarrow{PB}}{丨\overrightarrow{n}丨•丨\overrightarrow{PB}丨}$=$\frac{2\sqrt{39}}{13}$,即可求得直线BD与平面AMC所成角的正弦值.

解答 解:证明:(Ⅰ)连结BD交AC于O,连接OM,
由ABCD为菱形,OB=CD,
∴OM∥PB,…(2分)
由直线PB不在平面AMC内,
OM?平面AMC,…(3分)
∴PB∥PCM.…(4分)
(Ⅱ)取AB的中点N,连接PN,ND,则∠AND=90°,

分别以NB,ND,NP为x,y,z轴建立空间直角坐标系,…(6分)
则B($\frac{a}{2}$,0,0),C(a,$\frac{\sqrt{3}}{2}a$,0),A(-$\frac{a}{2}$,0,0),C(0,$\frac{\sqrt{3}}{2}a$,0),P(0,0,$\frac{\sqrt{3}}{2}a$),M(0,$\frac{\sqrt{3}}{4}a$,$\frac{\sqrt{3}}{4}a$),
则$\overrightarrow{AC}$=($\frac{3}{2}a$,$\frac{\sqrt{3}}{2}a$,0),$\overrightarrow{AM}$=($\frac{a}{2}$,$\frac{\sqrt{3}}{4}a$,$\frac{\sqrt{3}}{4}a$),…(7分)
设平面AMC的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\frac{3}{2}ax+\frac{\sqrt{3}}{2}ay=0}\\{\frac{a}{2}x+\frac{\sqrt{3}}{4}ay+\frac{\sqrt{3}}{4}az=0}\end{array}\right.$,…(8分)
令y=$\sqrt{3}$,则x=-1,z=-$\frac{\sqrt{3}}{3}$,
即$\overrightarrow{n}$=(-1,$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$),…(10分)
又$\overrightarrow{BD}$=(-$\frac{a}{2}$,$\frac{\sqrt{3}}{2}a$,0),
设直线BD与$\overrightarrow{n}$所成的角为θ,则cosθ=$\frac{\overrightarrow{n}•\overrightarrow{PB}}{丨\overrightarrow{n}丨•丨\overrightarrow{PB}丨}$=$\frac{2\sqrt{39}}{13}$,
故直线BD与平面AMC所成角的正弦值为$\frac{2\sqrt{39}}{13}$.…(12分)

点评 本题考查了线面平行的判定,空间向量的应用与二面角的计算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,b=35,c=20,C=30°,则此三角形解的情况是(  )
A.两解B.一解C.一解或两解D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设A={x|2≤x≤6},B={x|2a≤x≤a+3},若A∪B=A,则实数a的取值范围是(  )
A.[1,3]B.[3,+∞)C.[1,+∞)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校高三某班在一次语文周测中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,104),[104,108),[108,112),[112,116),[116,120),[120,124),[124,128],绘制出如图3所示频率分布直方图,已知分数低于112分的有18人,则分数不低于120分的人数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2ex
(1)求f(x)在(-∞,0)上的最大值;
(2)若函数f(x)在(-1,+∞)上的最小值为m,当x>0时,试比较$m-\frac{1}{2}$与lnx-2x+1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.${(x-\frac{1}{{\root{3}{x}}})^{16}}$的展开式中常数项为1820.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1
(Ⅰ)求f(x)的周期和单调减区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{6},\frac{π}{4}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l,m,n均为直线,其中m,n在平面α内,则“l⊥m且l⊥n”是“l⊥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC是锐角三角形,内角A、B、C所对的边分别是a、b、c,满足${sin}^{2}A=sin(\frac{π}{3}+B)sin(\frac{π}{3}-B)+{sin}^{2}$B.
(Ⅰ)求角A的值;
(Ⅱ)若$\overrightarrow{AB}•\overrightarrow{AC}$=12,a=2$\sqrt{7}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案