精英家教网 > 高中数学 > 题目详情
已知点是椭圆上的在第一象限内的点,又是原点,则四边形的面积的最大值是           
解:由于点P是椭圆上的在第一象限内的点,
设P为(2cosa,sina)即x=2cosa, y="sina" (0<a<π),
这样四边形OAPB的面积就可以表示为两个三角形OAP和OPB面积之和,
对于三角形OAP有面积S1="sina" 对于三角形OBP有面积S2=cosa∴四边形的面积S=S1+S2=sina+cosa
=" 2" sin(a+
其最大值就应该为 2 ,
并且当且仅当a=时成立.所以,面积最大值
故答案为: .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆,a,b为常数),动圆。点分别为的左,右顶点,相交于A,B,C,D四点。
(1)求直线与直线交点M的轨迹方程;
(2)设动圆相交于四点,其中。若矩形与矩形的面积相等,证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)

如图,在平面直角坐标系中,已知点为椭圆的右顶点, 点,点在椭
圆上, .

(1)求直线的方程;
(2)求直线被过三点的圆截得的弦长;
(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的右焦点重合,则的值为(  )
A.-2B.2 C.-4D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的离心率,则的值为 (       ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为.点P(1,)、AB在椭圆E上,且+=m(mR).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线与椭圆有相同的焦点,直线的一条渐近线,则双曲线的方程是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点Q(x,y),且满足·="1."
(1)求动点P所在曲线C的方程;
(2)过点B作斜率为-的直线L交曲线C于M、N两点,且++=,试求△MNH的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为椭圆的左、右顶点,若在椭圆上存在异于的点,使得,其中为坐标原点,则椭圆的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

同步练习册答案