精英家教网 > 高中数学 > 题目详情
已知圆x2+y2=4与抛物线y2=2px(p>0)的准线相切,则p=
4
4
分析:抛物线y2=2px(p>0)的准线方程是x=-
p
2
,圆x2+y2=4的圆心是(0,0),半径r=2,由圆x2+y2=4与抛物线y2=2px(p>0)的准线相切,知
p
2
=2
,由此能求出p.
解答:解:∵抛物线y2=2px(p>0)的准线方程是x=-
p
2

圆x2+y2=4的圆心是(0,0),半径r=2,
∴由圆x2+y2=4与抛物线y2=2px(p>0)的准线相切,
p
2
=2

解得p=4.
故答案为:4.
点评:本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知圆x2+y2=4,过A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=4上恰有两个点到直线4x-3y+c=0的距离为1,则实数c的取值范围是
(-15,-5)∪(5,15)
(-15,-5)∪(5,15)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=4内一定点M(0,1),经M且斜率存在的直线交圆于A(x1,y1)、B(x2,y2)两点,过点A、B分别作圆的切线l1,l2.设切线l1,l2交于点Q.
(1)设点P(x0,y0)是圆上的点,求证:过P的圆的切线方程是
x
 
0
x+y0y=4

(2)求证Q在一定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有三个点到直线12x-5y+c=0的距离为1,则实数c的值是
±13
±13

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=4及点P(1,1),则过点P的直线中,被圆截得的弦长最短时的直线的方程是
x+y-2=0
x+y-2=0

查看答案和解析>>

同步练习册答案