如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.
⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
(1),(2),(3).
解析试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,根据椭圆的长轴长为得,又由椭圆的左准线得,所以,,,就可得到椭圆的标准方程;由椭圆与椭圆离心率相同,得再由椭圆过点,代入可得椭圆(2)涉及弦中点问题,一般用“点差法”构造等量关系.本题较简单,可直接求出中点坐标,再利用直线与椭圆联立方程组求交点坐标;(3)求定值问题,一是确定定值,这可利用特殊情况給于确定,二是参数选择,不仅要揭示问题本质,更要易于消元,特别是整体消元.本题研究的是直线与直线的斜率之积,即它们坐标满足为定值,参数选为点的坐标,利用点的坐标满足进行整体消元.
试题解析:⑴设椭圆方程为,椭圆方程为,
则,∴,又其左准线,∴,则
∴椭圆方程为,其离心率为, 3分
∴椭圆中,由线段的长为,得,代入椭圆,
得,∴,椭圆方程为; 6分
⑵,则中点为,∴直线为, 7分
由,得或,
∴点的坐标为; 10分
⑶设,,则,,
由题意,∴ 12分
∴
14分
∴
科目:高中数学 来源: 题型:解答题
已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线与能否垂直?若能,求之间满足的关系式;若不能,说明理由;
(2)已知为的中点,且点在椭圆上.若,求之间满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在轴上,抛物线上的点到的距离为2,且的横坐标为1.直线与抛物线交于,两点.
(1)求抛物线的方程;
(2)当直线,的倾斜角之和为时,证明直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点,点在直线:上运动,过点与垂直的直线和线段的垂直平分线相交于点.
(1)求动点的轨迹的方程;
(2)过(1)中的轨迹上的定点作两条直线分别与轨迹相交于,两点.试探究:当直线,的斜率存在且倾斜角互补时,直线的斜率是否为定值?若是,求出这个定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线的极坐标方程为,曲线的极坐标方程为,曲线、相交于、两点.()
(Ⅰ)求、两点的极坐标;
(Ⅱ)曲线与直线(为参数)分别相交于两点,求线段的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com