精英家教网 > 高中数学 > 题目详情

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有个红球、个白球的甲箱和装有个红球、个白球的乙箱中,各随机摸出一个球,在摸出的个球中,若都是红球,则获得一等奖;若只有个红球,则获得二等奖;若没有红球,则不获奖.

(1)求顾客抽奖次能获奖的概率;

(2)若某顾客有次抽奖机会,记该顾客在次抽奖中获一等奖的次数为,求的分布列和数学期望.

【答案】(1);(2)答案见解析.

【解析】分析:(1)间接法计算中奖概率;
(2)根据二项分布的概率公式计算X的各种取值对应的概率,得出分布列即数学期望.

详解:

(1)设顾客抽奖次能中奖的概率为

.

(2)设该顾客在一次抽奖中或一等奖的概率为.

的分布列为

数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为( )

A. 30B. 36C. 60D. 72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,点为边的中点.

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间上为增函数,求的取值范围;

2)当时,不等式上恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。

(1)求甲选手能晋级的概率;

(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,,不在轴上的动点满足于点的中点。

(1)求点的轨迹的方程;

(2)设曲线轴正半轴的交点为,斜率为的直线交两点,记直线的斜率分别为,试问是否为定值?若是,求出该定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前项和。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

同步练习册答案