精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=2x+$\frac{1}{x}$-1(x<0),则f(x)(  )
A.有最小值$2\sqrt{2}-1$B.有最小值$-(2\sqrt{2}+1)$C.有最大值$2\sqrt{2}-1$D.有最大值$-(2\sqrt{2}+1)$

分析 由于x<0,可由2x+$\frac{1}{x}$≤-2$\sqrt{2x•\frac{1}{x}}$=-2$\sqrt{2}$,即可得到最大值.

解答 解:函数f(x)=2x+$\frac{1}{x}$-1(x<0)
≤-2$\sqrt{2x•\frac{1}{x}}$-1=-(2$\sqrt{2}$+1),
当且仅当2x=$\frac{1}{x}$,即x=-$\frac{\sqrt{2}}{2}$时,
f(x)取得最大值-(2$\sqrt{2}$+1).
故选D.

点评 本题考查函数的最值的求法,注意运用基本不等式,同时注意满足的条件:一正二定三等,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图示),在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{\sqrt{2x+3}}{x+1}$的定义域是$[-\frac{3}{2},-1)∪(-1,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(Ⅰ) 能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ) 经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
附表及公式附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点P(cosα,sinα)在直线y=2x上,则tanα=2,sinα•cosα=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ex-ax2-x.
(1)当a=$\frac{1}{2}$时,证明:f(x)是R上的增函数;
(2)当x≥0时,f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过平面外一点作平面的垂线可以作(  )
A.1条B.2条C.3条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为v(m/s),鲑鱼的耗氧量的单位数为Q,研究中发现V与log3$\frac{Q}{100}$成正比,且当Q=900时,V=1.
(1)求出V关于Q的函数解析式;
(2)计算一条鲑鱼的游速是1.5m/s时耗氧量的单位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式(x+1)(1-x)>0的解集为(  )
A.{x|x<-1或x>1}B.{x|-1<x<1}C.{x|x>1}D.{x|x<-1}

查看答案和解析>>

同步练习册答案