精英家教网 > 高中数学 > 题目详情

【题目】函数y= 的定义域为A,值域为B,则A∩B=

【答案】[0,2]
【解析】解:要使函数有意义,则﹣x2﹣2x+8≥0,

即x2+2x﹣8≤0,解得﹣4≤x≤2,

即函数的定义域A=[﹣4,2].

y= =

∵﹣4≤x≤2,

∴0≤

即0≤x≤3,

即函数的值域B=[0,3],

∴A∩B=[﹣4,2]∩[0,3]=[0,2].

所以答案是:[0,2].

【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立,以及对函数的定义域及其求法的理解,了解求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|< )的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数F(x)=3[f(x﹣ )]2+mf(x﹣ )+2在区间[0, ]上有四个不同零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,点O1、O分别是上下底菱形对角线的交点.
(1)求证:A1O∥平面CB1D1
(2)求点O到平面CB1D1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数a,b,c满足loga3<logb3<logc3,则下列关系中不可能成立的(
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值的个数是(

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y= (υ>0).
(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,Sn为数列{an}的前n项和,a1=b1=1,且b3S3=36,b2S2=8(n∈N+).
(1)求an和bn
(2)若an<an+1 , 求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两种商品在过去一段时间内的价格走势如图所示,假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计),那么他持有的资金最多可变为(
A.120万元
B.160万元
C.220万元
D.240万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直平行六面体ABCD﹣A1B1C1D1中,底面ABCD是菱形,∠DAB=60°,AC∩BD=O,AB=AA1=1.

(1)求证:OC1∥平面AB1D1
(2)求证:平面AB1D1⊥平面ACC1A1
(3)求三棱锥A1﹣AB1D1的体积.

查看答案和解析>>

同步练习册答案