精英家教网 > 高中数学 > 题目详情
如图,已知点M(x,y)是椭圆C:=1上的动点,以M为切点的切线l与直线y=2相交于点P.
(1)过点M且l与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆,则以Q为切点的椭圆的切线方程是:

【答案】分析:(1)先求切线的斜率,可得直线l1的方程,确定l1与y轴交点纵坐标,即可求得l1与y轴交点纵坐标的取值范围;
(2)确定P的坐标,利用以PM为直径的圆恒过点T,结合向量知识,即可求得结论.
解答:解:(1)由椭圆得:,y'=
切线的斜率为:k=
所以,直线l1的方程为:
所以l1与y轴交点纵坐标为:y=-=
因为-1≤x≤1,所以,
所以,当切点在第一、二象限时,l1与y轴交点纵坐标的取值范围为:
则利用对称性可知l1与y轴交点纵坐标的取值范围为:
(2)依题意,可得∠PTM=90°,设存在T(0,t),M(x,y
由(1)得点P的坐标(,2),
可得(0-,t-2)•(-x,t-y)=0,
∴1-y+(t-2)(t-y)=0,
∴y(1-t)+(t-1)2=0
∴t=1
∴存在点T(0,1)满足条件.
点评:本题考查直线与椭圆的位置关系,考查向量知识的运用,考查学生的运算能力,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知点A(-2,0),点P是⊙B:(x-2)2+y2=36上任意一点,线段AP的垂直平分线交BP于点Q,点Q的轨迹记为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切线l总与曲线C有两个交点M、N,并且其中一条切线满足∠MON>90°,求证:对于任意一条切线l总有∠MON>90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)如图,已知点H(-3,0),动点P在y轴上,点Q在x轴上,其横坐标不小于零,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)(在下列两题中,任选一题,写出计算过程,并求出结果,若同时选做两题,
则只批阅第②小题,第①题的解答,不管正确与否,一律视为无效,不予批阅):
①将(1)中的曲线C推广为椭圆:
x2
2
+y2=1
,并
将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解;
②(解答本题,最多得9分)将(1)中的曲线C推广为椭圆:
x2
a2
+
y2
b2
=1
,并
将(2)中的定点取为原点,求与(2)相类似的问题的解.

查看答案和解析>>

科目:高中数学 来源:《圆锥曲线》2012-2013学年广东省十三大市高三(上)期末数学试卷汇编(理科)(解析版) 题型:解答题

如图,已知点M(x,y)是椭圆C:=1上的动点,以M为切点的切线l与直线y=2相交于点P.
(1)过点M且l与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆,则以Q为切点的椭圆的切线方程是:

查看答案和解析>>

科目:高中数学 来源:2013年广东省高考数学押题预测试卷(理科)(解析版) 题型:解答题

如图,已知点M(x,y)是椭圆C:=1上的动点,以M为切点的切线l与直线y=2相交于点P.
(1)过点M且l与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆,则以Q为切点的椭圆的切线方程是:

查看答案和解析>>

同步练习册答案