精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中点.
(1)求证:平面CFM⊥平面BDF;
(2)点N在CE上,EC=2,FD=3,当CN为何值时,MN∥平面BEF.

【答案】
(1)证明:∵FD⊥底面ABCD,∴FD⊥AD,FD⊥BD

∵AF=BF,∴△ADF≌△BDF,∴AD=BD,

连接DM,则DM⊥AB,

∵AB∥CD,∠BCD=90°,

∴四边形BCDM是正方形,∴BD⊥CM,

∵DF⊥CM,∴CM⊥平面BDF


(2)解:(2)当CN=1,即N是CE的中点时,MN∥平面BEF.

证明如下:

过N作NO∥EF,交ED于O,连结MO,

∵EC∥FD,∴四边形EFON是平行四边形,

∵EC=2,FD=3,∴OF=1,∴OD=2,

连结OE,则OE∥DC∥MB,且OE=DC=MB,

∴四边形BMOE是平行四边形,则OM∥BE,又OM∩ON=O,

∴平面OMN∥平面BEF,

∵MN平面OMN,∴MN∥平面BEF.


【解析】(1)推导出四边形BCDM是正方形,从而BD⊥CM,又DF⊥CM,由此能证明CM⊥平面BDF.(2)过N作NO∥EF,交EF于O,连结MO,则四边形EFON是平行四边形,连结OE,则四边形BMON是平行四边形,由此能推导出N是CE的中点时,MN∥平面BEF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2016年9月,第22届鲁台经贸洽谈会在潍坊鲁台会展中心举行,在会展期间某展销商销售一种商品,根据市场调查,每件商品售价x(元)与销量t(万元)之间的函数关系如图所示,又知供货价格与销量呈反比,比例系数为20.(注:每件产品利润=售价﹣供货价格)
(1)求售价15元时的销量及此时的供货价格;
(2)当销售价格为多少时总利润最大,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx,g(x)= +mx+ (m<0),直线l与函数f(x)的图象相切,切点的横坐标为1,且直线l与函数g(x)的图象也相切.
(1)求直线l的方程及实数m的值;
(2)若h(x)=f(x+1)﹣g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的最大值;
(3)当0<b<a时,求证:f(a+b)﹣f(2a)<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;
(2)解不等式
(3)求函数g(x)=|logax﹣1|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=3sin(2x+ )的图象向右平移 个单位长度,所得图象对应的函数(
A.在区间( )上单调递减
B.在区间( )上单调递增
C.在区间(﹣ )上单调递减
D.在区间(﹣ )上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)求的单调区间;

(2)设,且有两个极值点,其中,求的最小值;

(3)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,a1=1,且a2是a1和a3﹣1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=2n﹣1+an(n∈N*),求{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案