精英家教网 > 高中数学 > 题目详情
1.如图,在正方体ABCD-A1B1C1D1中,AB=3$\sqrt{3}$,点E,F在线段DB1上,且DE=EF=FB1,点M是正方体表面上的一动点,点P,Q是空间两动点,若$\frac{|PE|}{|PF|}$=$\frac{|QE|}{|QF|}$=2且|PQ|=4,则$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值为-$\frac{8}{3}$.

分析 首先由由题意可得DB1=9,EF=3,在线段EF上取一点K,使得EK=2,FK=1,设KB1的中点为N,如图,由已知可得点P,Q在以KB1为直径的球N的表面上,球心为N,球的直径为4,由于|PQ|=4,故PQ是球N的直径,由向量的知识可知$\overrightarrow{MP}$•$\overrightarrow{MQ}$=${\overrightarrow{MN}}^{2}$-4,故要求$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值,只需要求出|$\overrightarrow{MN}$|的最小值,结合图形解答即可

解答 解:如图,由题意可得DB1=9,EF=3,
在线段EF上取一点K,使得EK=2,FK=1,
设KB1的中点为N,
由于$\frac{|PE|}{|PF|}$=$\frac{|QE|}{|QF|}$=2,则点P,Q在以KB1为直径的球N的表面上,球心为N,球的直径为4,
由于|PQ|=4,故PQ是球N的直径,
即$\overrightarrow{MP}$•$\overrightarrow{MQ}$=$\frac{1}{4}$($\overrightarrow{MP}$+$\overrightarrow{MQ}$)2-($\overrightarrow{MP}$-$\overrightarrow{MQ}$)2]=${\overrightarrow{MN}}^{2}$-$\frac{1}{4}$${\overrightarrow{QP}}^{2}$=${\overrightarrow{MN}}^{2}$-4,
故要求$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值,只需要求出|$\overrightarrow{MN}$|的最小值,
设点N在平面BCC1B1内的射影为M0,则当M在M0处时,|$\overrightarrow{MN}$|有最小值$\frac{2}{9}$|$\overrightarrow{AB}$|=$\frac{2\sqrt{3}}{3}$,
此时${\overrightarrow{MN}}^{2}$-4=$\frac{4}{3}$-4=-$\frac{8}{3}$,
故答案为:-$\frac{8}{3}$

点评 本题考查了空间几何体,以及向量的有关知识,关键是判断出要求$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值,只需要求出|$\overrightarrow{MN}$|的最小值,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.为了促销某电子产品,商场进行降价,设m>0,n>0,m≠n,有三种降价方案:
方案①:先降m%,再降n%;
方案②:先降$\frac{m+n}{2}%$,再降$\frac{m+n}{2}%$;
方案③:一次性降价(m+n)%.
则降价幅度最小的方案是②.(填出正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的虚轴长为4,焦距为$4\sqrt{3}$,则双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将十进制数217转化为二进制数11011001(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列结论正确的是①②④.
①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=e4
③已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题;
④设常数a、b∈R+,则不等式ax2-(a+b-1)x+b>0对?x>1恒成立的充要条件是a≥b-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知P(-4,3)是角α的终边上的一点,求sinα,cosα,tanα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1与双曲线C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1有相同的焦点,则椭圆C1的离心率e1的取值范围为$\frac{\sqrt{2}}{2}$<e1<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列点在曲线x2+y2-3xy+2=0上的是(  )
A.$(0,\sqrt{2})$B.$(\sqrt{2},0)$C.$(-\sqrt{2},\sqrt{2})$D.$(\sqrt{2},\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设偶函数f(x)对任意x∈R,都有$f(x+3)=-\frac{1}{f(x)}$,且当x∈[-3,-2]时,f(x)=4x,则f(2018)=-8.

查看答案和解析>>

同步练习册答案