精英家教网 > 高中数学 > 题目详情
设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点M(
2
,1)
,离心率为
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足
|
AP
|
|
PB
|
=
|
AQ
|
|
QB
|
=λ,证明:点Q的轨迹与λ无关.
分析:(Ⅰ)先根据离心率求得c,a的关系,则根据a,b和c的关系求得b,则椭圆的方程可得;
(Ⅱ)先设点Q(x,y),A(x1,y1),B(x2,y2),由题设
|
PA
|
|
AQ
|
=
|
PB
|
|
QB
|
=λ.又P,A,Q,B四点共线,可得
PA
=-λ
AQ
PB
BQ
(λ≠0,±1)
结合A(x1,y1),B(x2,y2)在椭圆C上,得到2x+y-2=0最后根据点Q(x,y)总在定直线2x+y-2=0上.即点Q的轨迹与λ无关.
解答:解(Ⅰ)由题意解得a2=4,b2=2,所求椭圆方程为
x2
4
+
y2
2
=1

(Ⅱ)设点Q(x,y),A(x1,y1),B(x2,y2),由题设
|
PA
|
|
AQ
|
=
|
PB
|
|
QB
|
=λ.
又P,A,Q,B四点共线,可得
PA
=-λ
AQ
PB
BQ
(λ≠0,±1)

于是x1=
4-λx
1-λ
y1=
1-λy
1-λ
(1)x2=
4+λx
1+λ
y2=
1+λy
1+λ
(2)
由于A(x1,y1),B(x2,y2)在椭圆C上,将(1),(2)分别代入C的方程x2+2y2=4,
整理得(x2+2y2-4)λ2-4(2x+y-2)λ+14=0(3)(x2+2y2-4)λ2+4(2x+y-2)λ+14=0(4)
(4)-(3)得8(2x+y-2)λ=0,∵λ≠0,∴2x+y-2=0,(
点Q(x,y)总在定直线2x+y-2=0上.即点Q的轨迹与λ无关.
点评:本小题主要考查椭圆的标准方程、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力与化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
OP
OQ
=-
5
3
求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)若过A.Q.F2三点的圆恰好与直线l:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1
|F2M|
+
1
|F2N|
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦点分别为F1,F2,若P 是椭圆上的一点,|
PF1
|+|
PF2
|=4
,离心率e=
3
2

(1)求椭圆C的方程;
(2)若P 是第一象限内该椭圆上的一点,
PF1
PF2
=-
5
4
,求点P的坐标;
(3)设过定点P(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1,F2,离心率为e=
2
2
,以F1为圆心,|F1F2|为半径的圆与直线x-
3
y-3=0
相切.
(I)求椭圆C的方程;
(II)直线y=x交椭圆C于A、B两点,D为椭圆上异于A、B的点,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案