精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上有最大值和最小值.

1)求的值

2)若不等式上有解,求实数的取值范围;

3)若有三个不同的实数解,求实数的取值范围.

【答案】1.23

【解析】

(1)由函数,所以在区间上是增函数,故,由此解得的值;

(2)由(1)可得,所以上有解,等价于上有解, 上有解, ,,即可求得的取值范围;

(3)原方程可化为,,有两个不同的实数解,其中,或,即可求得实数的取值范围.

(1)函数,

,

在区间上是增函数,

故:,解得.

(2)由(1)可得,

上有解

等价于上有解

上有解

,

,

,

的取值范围为

(3)原方程可化为

有两个不同的实数解

其中,或

——①,解得

——②,不等式组②无实数解.

实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 设函数

(1)如果,那么实数___;

(2)如果函数有且仅有两个零点,那么实数的取值范围是___.

【答案】或4

【解析】

试题分析:由题意 ,解得

第二问如图:

的图象是由两条以 为顶点的射线组成,当A,B 之间(包括不包括)时,函数有两个交点,即有两个零点.所以 的取值范围为

考点:1.分段函数值;2.函数的零点.

型】填空
束】
15

【题目】已知函数的部分图象如图所示.

)求函数的解析式.

)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,则下列结论正确的是(

A.直线的倾斜角是B.若直线

C.到直线的距离是D.与直线平行的直线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如下图所示的频率分布直方图.

(I)写出a的值;

(II)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;

(III)从阅读时间不足10个小时的样本学生中随机抽取3人,并用X表示其中初中生的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,第6组,如图是按上述分组方法得到的频率分布直方图.

若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

试估计该市市民正确书写汉字的个数的平均数与中位数;

已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线.

(1)求曲线的普通方程,曲线的直角坐标方程;

(2)若点为曲线上的任意一点,为曲线上的任意一点,求线段的最小值,并求此时的的坐标;

(3)过(2)中求出的点做一直线,交曲线两点,求面积的最大值(为直角坐标系的坐标原点),并求出此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,且,若的面积为,则的最小值为( )

A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级有1000人,某次数学考试不同成绩段的人数

(1)求该校此次数学考试平均成绩;

(2)计算得分超过141的人数;

(3)甲同学每次数学考试进入年级前100名的概率是,若本学期有4次考试, 表示进入前100名的次数,写出的分布列,并求期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司准备将万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润(万元)的概率分布列如表所示:

的期望;若投资乙项目一年后可获得的利润(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为.若乙项目产品价格一年内调整的次数(次数)与的关系如表所示:

Ⅰ)求的值;

Ⅱ)求的分布列;

Ⅲ)若该公司投资乙项目一年后能获得较多的利润,的取值范围.

查看答案和解析>>

同步练习册答案