精英家教网 > 高中数学 > 题目详情
9.已知集合A={a,1},B={a2,0},那么“a=-1”是“A∩B≠∅”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据集合交集的定义结合充分条件和必要条件的定义进行判断.

解答 解:当a=-1时,A={-1,1},B={1,0},则A∩B={1}≠∅成立,即充分性成立,
若A∩B≠∅,则a2=1或a2=a,即a=1或a=-1或a=0,
当a=1时,A={1,1}不成立,
当a=-1时,A={-1,1},B={1,0},则A∩B={1}≠∅成立,
当a=0时,B={0,0}不成立,综上a=-1,
即“a=-1”是“A∩B≠∅”的充要条件,
故选:C

点评 本题主要考查充分条件和必要条件的判断,根据集合交集的定义进行运算是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点(2,0)在椭圆C上.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P(1,0)的直线(不与坐标轴垂直)与椭圆交于A、B两点,设点B关于x轴的对称点为B'.直线AB'与x轴的交点Q是否为定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α是第二象限角,且sinα=$\frac{3}{5}$,则cos(π-α)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,已知sinA:sinB:sinC=3:5:7,则此三角形的最小内角的余弦值等于$\frac{13}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)是R上的偶函数,g(x)是R上的奇函数,给出下列四个结论:
(1)f(x)|g(x)|是R上的偶函数;(2)|f(x)|g(x)是R上的偶函数;(3)f(x)•g(x)是R上的奇函数;(4)f(x)-g(x)是R上的偶函数:其中正确的结论个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设数列{an}(n≥1,n∈N)满足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超过x的最大整数,则$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-6ax-1,x≤1}\\{{a}^{x}-7,x>1}\end{array}\right.$,对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则实数a的取值范围是(  )
A.($\frac{1}{3}$,1)B.[$\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中,AC=BC,AB=AA1,∠A1AB=60°,D是AB的中点.
(Ⅰ)求证:BC1∥平面A1CD;
(Ⅱ)求证:AB⊥平面A1CD;
(Ⅲ)若AB=AC=2,${A_1}C=\sqrt{6}$,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,三棱柱A1B1C1-ABC的侧棱AA1⊥底面ABC,AB⊥AC,AB=AA1,D是棱CC1的中点.
(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.

查看答案和解析>>

同步练习册答案