精英家教网 > 高中数学 > 题目详情
7.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{k}$=1的离心率为$\frac{1}{2}$,则k的值为(  )
A.3B.$\frac{16}{3}$C.3或$\frac{16}{3}$D.$\frac{19}{25}$或21

分析 根据题意,依据椭圆焦点的不同位置分2种情况讨论:①、当k<4时,其焦点在x轴上,②、当k>4时,其焦点在y轴上,每种情况下求出a、b、c的值,表示出离心率,进而结合题意可得关于k的方程,解可得k的值,综合可得答案.

解答 解:根据题意,椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{k}$=1,分2种情况讨论:
①、当k<4时,其焦点在x轴上,
此时有a=$\sqrt{4}$=2,b=$\sqrt{k}$,则c=$\sqrt{4-k}$,
若其离心率为$\frac{1}{2}$,即e=$\frac{c}{a}$=$\frac{\sqrt{4-k}}{2}$=$\frac{1}{2}$,
解可得k=3,
②、当k>4时,其焦点在y轴上,
此时有b=$\sqrt{4}$=2,a=$\sqrt{k}$,则c=$\sqrt{k-4}$,
若其离心率为$\frac{1}{2}$,即e=$\frac{c}{a}$=$\frac{\sqrt{k-4}}{\sqrt{k}}$=$\frac{1}{2}$,
解可得k=$\frac{16}{3}$,
综合可得:k=3或$\frac{16}{3}$;
故选:C.

点评 本题考查椭圆的性质,注意本题不能确定椭圆焦点的位置,需要分情况讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知A(1,3),B(a,1),C(-b,0),(a>0,b>0),若A,B,C三点共线,则$\frac{3}{a}$+$\frac{1}{b}$的最小值是11+6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算:${2^{\frac{3}{2}}}•{2^{-\frac{1}{2}}}$=2,$lg25-lg\frac{1}{4}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知复数z满足(3+4i)z=5i2016(i为虚数单位),则|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.小明每天上学都需要经过一个有交通信号灯的十字路口,已知十字路口的交通信号灯路灯亮灯的时间为40秒,红灯50秒,如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正△ABC的边长为a,那么的平面直观图△A'B'C'的面积为$\frac{{\sqrt{6}}}{16}{a^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.己知函数f(x)=log2(-x2+2x+3)的定义域为A,函数g(x)=$\frac{1}{x}$,x∈(-3,0)∪(0,1)的值域为B,不等式2x2+mx-8<0的解集为C
(1)求A∪(∁RB)、A∩B
(2)若同时满足A,B的x值也满足C,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是(  )
A.有两个内角是钝角B.有三个内角是钝角
C.至少有两个内角是钝角D.没有一个内角是钝角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{1-2x}$+lg(1+3x)的定义域是(  )
A.(-∞,-$\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案