精英家教网 > 高中数学 > 题目详情
按如表的规律,2014应当在(  )
  第一列 第二列 第三列 第四列 第五列
 第一行  2 4 6 8
  16 14 1210  
   18 20 22 24
  32 30 28 26 
A、第252行,第2列
B、第252行,第3列
C、第253行,第3列
D、第253行,第4列
考点:归纳推理,数列的函数特性
专题:计算题,推理和证明
分析:由题意知,数由偶数构成,且每一行4个数,奇数行从左向右排列,偶数从右向左按大小顺序排列,从而解得.
解答: 解:观察可知,数由偶数构成,
且每一行4个数,
奇数行从左向右排列,
偶数从右向左按大小顺序排列,
而2014÷2=1007,
1007=252×4-1;
故是第252行的数,且是从右向左倒数第二个数,
故在第252行,第2列.
点评:本题考查了归纳推理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l:ax-y+b=0与圆M:x2+y2-2ax+2by=0,则l与M在同一坐标系内的图形可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆A:(x+2)2+y2=
25
4
,圆B:(x-2)2+y2=
1
4
,动圆P与圆A、圆B均外切.
(Ⅰ) 求动圆P的圆心的轨迹C的方程;
(Ⅱ)过圆心B的直线与曲线C交于M、N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数图象
(1)y=-x2+2|x|+3               
(2)y=
x-1,x≤1
log2x,x>1

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取某中学甲、乙两班各10名学生,测量他们的体重(单位:kg),获得体重数据的茎叶图如图:
(1)根据茎叶图判断哪个班的平均体重较重;
(2)计算甲班的众数、极差和样本方差;
(3)现从乙班这10名体重不低于64kg的学生中随机抽取两名,求体重为67kg的学生被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值是(  )
A、2
B、
1
2
C、4
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-2cos2x+1.
(Ⅰ)当x∈[0,
π
2
]时,求函数f(x)的最大值;
(Ⅱ)若f(α)=
8
5
(α∈[0,
π
6
]),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)=x2+bx+c在(m,m+1)内有两个不同的实根,则(  )
A、f(m)和f(m+1)都大于
1
4
B、f(m)和f(m+1)至少有一个大于
1
4
C、f(m)和f(m+1)都小于
1
4
D、f(m)和f(m+1)至少有一个小于
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy中,椭圆C:
x2
a2
+
y2
b2
=1,长半轴长为4,离心率为
1
2

(1)求椭圆C的标准方程;
(2)若点E(0,1),问是否存在直线l与椭圆交于M,N两点且|ME|=|NE|,若存在,求出直线l斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案