精英家教网 > 高中数学 > 题目详情
5.已知直线l的极坐标方程为$ρsin(θ-\frac{π}{3})=6$,圆C的参数方程为$\left\{\begin{array}{l}x=10cosθ\\ y=10sinθ\end{array}\right.(θ$为参数).
(1)请分别把直线l和圆C的方程化为直角坐标方程;
(2)求直线l被圆截得的弦长.

分析 (1)展开两角差的正弦,代入x=ρcosθ,y=ρsinθ得到直线l的直角坐标方程,两式平方作和消去θ得到圆的普通方程;
(2)求出圆心到直线的距离,利用弦心距、圆的半径及弦长的关系求得答案.

解答 解:(1)由$ρsin(θ-\frac{π}{3})=6$,得$ρ(\frac{1}{2}sinθ-\frac{\sqrt{3}}{3}cosθ)=6$,
∴y-$\sqrt{3}x=12$,即$\sqrt{3}x-y+12=0$.
圆的方程为x2+y2=100.
(2)圆心(0,0)到直线$\sqrt{3}x-y+12=0$的距离d=$\frac{|12|}{\sqrt{(\sqrt{3})^{2}+1}}=6$,y=10,
∴弦长l=$2\sqrt{100-36}=16$.

点评 本题考查参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了弦心距、圆的半径及弦长的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.老师给出问题:“设函数f(x)的定义域是(0,1),且满足:①对于任意的x∈(0,1),f(x)>0;②对于任意的x1,x2∈(0,1),恒有$\frac{{f({x_1})}}{{f({x_2})}}+\frac{{f(1-{x_1})}}{{f(1-{x_2})}}$≤2.请同学们对函数f(x)进行研究”.经观察,同学们提出以下几个猜想:
甲同学说:f(x)在$(0,\frac{1}{2}]$上递减,在$[\frac{1}{2},1)$上递增;
乙同学说:f(x)在$(0,\frac{1}{2}]$上递增,在$[\frac{1}{2},1)$上递减;
丙同学说:f(x)的图象关于直线x=$\frac{1}{2}$对称;
丁同学说:f(x)肯定是常函数.
你认为他们的猜想中正确的猜想个数有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y为共轭复数,且(x+y)2-3xyi=4-6i,(x+y)2-3xyi=4-6i,则|x|+|y|=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设p:函数f(x)=x3-3x-a在x∈[$-\frac{1}{2}$,$\sqrt{3}$]内有零点;q:a>0,函数g(x)=x2-alnx在区间$(0,\frac{a}{2})$内是减函数.若p和q有且只有一个为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在正方体ABCD-A1B1C1D1中,异面直线AC与BC1所成角的大小是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x2-2x-8|.
(Ⅰ)画出函数f(x)的图象.
(Ⅱ)求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若关于x的方程2sin(2x+$\frac{π}{6}$)+a-1=0(a∈R)在区间[0,$\frac{π}{2}$]上有两个不相等的实根x1,x2,则(  )
A.x1+x2>|a+1|1.1
B.x1+x2<|a+1|1.1
C.x1+x2=|a+1|1.1
D.x1+x2与|a+1|1.1的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,则曲线$\frac{{x}^{2}}{sinθ}-\frac{{y}^{2}}{cosθ}$=1是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知$a=4,c=2\sqrt{2}$,$cosA=-\frac{{\sqrt{2}}}{4}$.
(1)求sinC和b的值;
(2)求$sin(2A-\frac{π}{3})$的值.

查看答案和解析>>

同步练习册答案