精英家教网 > 高中数学 > 题目详情
19.如图,在四棱锥P-ABCD中,底面ABCD是矩形,E,F,G分别是AB,BD,PC的中点,PE⊥底面ABCD.
(Ⅰ)求证:平面EFG∥平面PAD.
(Ⅱ)是否存在实数λ满足PB=λAB,使得平面PBC⊥平面PAD?若存在,求出λ的值;若不存在,请说明理由.

分析 (Ⅰ)连结AC.证明GF∥PA.推出GF∥平面PAD.然后证明EF∥AD.得到EF∥平面PAD.即可证明平面EFG∥平面PAD.
(Ⅱ)存在λ,$λ=\frac{{\sqrt{2}}}{2}$,即$PB=\frac{{\sqrt{2}}}{2}AB$时,平面PBC⊥平面PAD.
方法一:证明PE⊥BC,PE⊥AB.得到BC⊥平面PAB.说明PA=PB.当PA⊥PB,$PA=PB=\frac{{\sqrt{2}}}{2}AB$时,PA⊥平面PBC.然后求解即可.
方法二:过点P作PQ∥BC.说明PQ,AD共面,推出PE⊥BC.说明∠APB是平面PAD和平面PBC所成二面角的平面角.然后通过$PA=\frac{{\sqrt{2}}}{2}AB$.即$PB=\frac{{\sqrt{2}}}{2}AB$时,说明平面PBC⊥平面PAD..

解答 (本题满分9分)
(Ⅰ)证明:连结AC.
∵底面ABCD是矩形,F是BD中点,
∴F也是AC的中点.

∵G是PC的中点,∴GF是△PAC的中位线,
∴GF∥PA.
∵GF?平面PAD,PA?平面PAD,
∴GF∥平面PAD.
∵E是AB中点,F是BD中点,
∴EF是△ABD的中位线,
∴EF∥AD.
∵EF?平面PAD,AD?平面PAD,
∴EF∥平面PAD.
∵GF∥平面PAD,EF∥平面PAD,EF∩FG=F,
∴平面EFG∥平面PAD.                                        …(5分)
(Ⅱ)解:存在λ,$λ=\frac{{\sqrt{2}}}{2}$,即$PB=\frac{{\sqrt{2}}}{2}AB$时,平面PBC⊥平面PAD.
方法一:∵PE⊥底面ABCD,BC?底面ABCD,AB?底面ABCD,
∴PE⊥BC,PE⊥AB.
∵底面ABCD是矩形,
∴AB⊥BC.
∵PE∩AB=E,
∴BC⊥平面PAB.
∵PA?平面PAB,
∴PA⊥BC.
∵PE⊥AB,E为AB的中点,
∴PA=PB.
当PA⊥PB,即$PA=PB=\frac{{\sqrt{2}}}{2}AB$时,
∴PA⊥平面PBC.
∵PA?平面PAD,
∴平面PAD⊥平面PBC.此时 $λ=\frac{{\sqrt{2}}}{2}$.…(9分)
方法二:过点P作PQ∥BC.

∴PQ,BC共面,即PQ?平面PBC.
∵底面ABCD是矩形,
∴AD∥BC.
∵PQ∥BC,
∴PQ∥AD.
∴PQ,AD共面,即PQ?平面PAD.
∴平面PBC∩平面PAD=PQ.
∵PE⊥底面ABCD,BC?底面ABCD,
∴PE⊥BC.
∵底面ABCD是矩形,
∴AB⊥BC.
∵PQ∥BC,
∴PE⊥PQ,AB⊥PQ.
∵PE∩AB=E,
∴PQ⊥平面PAB.
∵PA?平面PAB,PB?平面PAB,
∴PA⊥PQ,PB⊥PQ,
∴∠APB是平面PAD和平面PBC所成二面角的平面角.
∵平面PAD⊥平面PBC,
∴∠APB=90°.
∵PE⊥AB,E为AB的中点,
∴PA=PB.
∴△PAB是等腰直角三角形.
∴$PA=\frac{{\sqrt{2}}}{2}AB$.即$PB=\frac{{\sqrt{2}}}{2}AB$时,平面PBC⊥平面PAD.    …(9分)

点评 本题考查平面与平面平行于垂直的判定定理以及性质定理的应用,存在性问题的处理方法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知关于x的不等式ax2+2x+b>0(a≠0)的解集为$\{x|x≠-\frac{1}{a},x∈R\}$,且a>b,则$\frac{{{a^2}+{b^2}+1}}{a-b}$的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2x2+mx+4,它在(-∞,-2]上单调递减,则f(1)的取值范围是(  )
A.f(1)=14B.f(1)>14C.f(1)≤14D.f(1)≥14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从1,2,3,4,5,6,7中任取两个不同的数,事件A为“取到的两个数的和为偶数”,事件B为“取到的两个数均为奇数”则P(B|A)=(  )
A.$\frac{4}{7}$B.$\frac{3}{7}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知O为椭圆中心,F1为椭圆的左焦点,A,B分别为椭圆的右顶点与上顶点,P为椭圆上一点,若PF1⊥F1A,PO∥AB,则该椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-x,g(x)=lnx.
(Ⅰ)求函数y=xg(x)的单调区间;
(Ⅱ)若t∈[$\frac{1}{2}$,1],求y=f[xg(x)+t]在x∈[1,e]上的最小值(结果用t表示);
(Ⅲ)设h(x)=f(x)-$\frac{1}{2}$x2-(2a+1)x+(2a+1)g(x),若a∈[e,3],?x1,x2∈[1,2](x1≠x2),|$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{m}{{x}_{1}{x}_{2}}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A=[-1,3],B=[m,m+6],m∈R.
(1)当m=2时,求A∩∁RB;
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,若函数f(x)=min{x2-3x+3,-|x-3|+3},且f(x)在区间[m,n]上的值域为[$\frac{3}{4}$,$\frac{7}{4}$],则区间[m,n]长度的最大值为(  )
A.1B.$\frac{7}{4}$C.$\frac{11}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线m、n与平面α,β,m⊥α,n⊥β,若α⊥β,则m、n的位置关系是(  )
A.平行B.垂直C.相交D.异面

查看答案和解析>>

同步练习册答案