【题目】某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为.
(1)若,,则在第一轮游戏他们获“优秀小组”的概率;
(2)若则游戏中小明小亮小组要想获得“优秀小组”次数为次,则理论上至少要进行多少轮游戏才行?并求此时的值.
【答案】(1)(2)理论上至少要进行轮游戏.
【解析】
(1)分①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次三种情况进行求和即可.
(2)同(1),分别计算三种情况的概率化简求和,再代入可知,再设,根据二次函数在区间上的最值方法求解可得当时,.再根据他们小组在轮游戏中获“优秀小组”次数满足,利用二项分布的方法求解即可.
解:(1)由题可知,所以可能的情况有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次.
故所求概率
(2)他们在一轮游戏中获“优秀小组”的概率为
因为,所以
因为,,,所以,,又
所以,令,以,则
当时,,他们小组在轮游戏中获“优秀小组”次数满足
由,则,所以理论上至少要进行轮游戏.此时,,
科目:高中数学 来源: 题型:
【题目】以下数表构造思路源于我国南宋数学家杨辉所著的《详解九章算法》一书中的“杨辉三角形”.
该表由若干行数字组成,从第二行起,第一行中的数字均等于其“肩上”两数之和,表中最后行仅有一个数,则这个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y(单位:个)与一定范围内的温度x(单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:
日期 | 2日 | 7日 | 15日 | 22日 | 30日 |
温度/℃ | 10 | 11 | 13 | 12 | 8 |
产卵数y/个 | 22 | 24 | 29 | 25 | 16 |
(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m,n,求“事件m,n均不小于24”的概率?
(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.
①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y关于x的线性回归方程?
②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?
附公式:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在定义域内的某个区间上是增函数,且在上也是增函数,则称是上的“完美增函数”.已知,.
(1)判断函数是否为区间上的“完美增函数”;
(2)若函数是区间上的“完美增函数”,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为.
(1)若,,则在第一轮游戏他们获“优秀小组”的概率;
(2)若则游戏中小明小亮小组要想获得“优秀小组”次数为次,则理论上至少要进行多少轮游戏才行?并求此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程为,直线:,直线:.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.
(1)求直线,的直角坐标方程以及曲线的参数方程;
(2)已知直线与曲线交于,两点,直线与曲线C交于,两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这100件产品质量指标值的样本平均数和样本方差(同一组的数据用该组区间的中点值作为代表);
(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差。
(i)若某用户从该企业购买了10件这种产品,记表示这10件产品中质量指标值位于(187.4,225.2)的产品件数,求;
(ii)一天内抽取的产品中,若出现了质量指标值在之外的产品,就认为这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查下。下面的茎叶图是检验员在一天内抽取的15个产品的质量指标值,根据近似值判断是否需要对当天的生产过程进行检查。
附:,,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别
有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | |||
合计 |
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
0.05 | 0.01 | |
k | 3.841 | 6.635 |
附
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com