精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-\frac{1}{2},(x<1)}\\{lnx,x≥1}\end{array}\right.$,若f(f(a))=lnf(a),则实数a的取值范围是(  )
A.(-∞,e)B.[e,+∞)C.[$\frac{3}{2e}$,3]D.(2,e]

分析 对a讨论,分a<1,a=1,1<a<e,a≥e,结合分段函数和对数函数的单调性,即可得到a的范围.

解答 解:由x<1时,f(x)=$\frac{1}{2}$x-$\frac{1}{2}$递增,且有f(x)<0;
由x≥1,f(x)=lnx递增,且有f(x)≥0,
若f(f(a))=lnf(a),
若a<1,则f(a)<0,不成立;
当a≥1时,f(a)=lna≥0,(a=1显然不成立),
当1<a<e,可得0<lna<1,f(a)=lna∈(0,1),
则f(f(a))=f(lna)=$\frac{1}{2}$lna-$\frac{1}{2}$∈(-$\frac{1}{2}$,0),
lnf(a)=ln(lna)<0,
f(f(a))=lnf(a)不恒成立.
当a≥e时,f(a)=lna≥1,
即有f(f(a))=f(lna)=ln(lna),
lnf(a)=ln(lna),
则f(f(a))=lnf(a)恒成立.
故选:B.

点评 本题考查分段函数的应用,注意运用分类讨论思想方法,考查对数函数的性质,考查化简运算和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=|x-a|,g(x)=\frac{2}{x}+1$,若两函数的图象有且只有三个不同的公共点,则实数a的取值范围是(  )
A.(-∞,-2)B.$(1+2\sqrt{2},+∞)$C.$(-∞,-2]∪[1+2\sqrt{2},+∞)$D.$(-∞,-2)∪(1+2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=(m2-m-1)x${\;}^{{m}^{2}+m-3}$是幂函数,且当x∈(0,+∞)时f(x)是减函数,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\frac{1}{{\sqrt{{{log}_{0.6}}(4x-3)}}}$的定义域为(  )
A.$(\frac{3}{4},+∞)$B.$(\frac{3}{4},1)$C.(1+∞)D.$(\frac{3}{4},1)∪(1+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)=ex-x-2,则函数f(x)的零点所在区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.经过两点(-1,2),(-3,-2)的直线的方程是(  )
A.x-2y+5=0B.x-2y-5=0C.2x-y-4=0D.2x-y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点为F,准线为x=-1,准线上位于x轴下方的一点为M,过点M及焦点F的直线l与C的一个交点为N,且F为线段MN的中点.
(1)求抛物线C及直线l的方程;
(2)若直线l与抛物线C的另一个交点为P(异于N),求线段PN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,sinB+$\sqrt{2}$sin$\frac{B}{2}$=1-cosB.
(1)求角B的大小;
(2)求sinA+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知两点A(-3,4),B(3,2),将直线l:kx-y-2k-1=0绕着它所过的定点旋转90°得到直线l′,若直线l′与射线AB有公共点,则实数k的取值范围为$[-\frac{1}{3},1]$.

查看答案和解析>>

同步练习册答案