分析 (1)由条件利用三角恒等变换,化简函数的解析式.
(2)根据函数的解析式再利用正弦函数的周期性和单调性,求得函数的最小正周期及单调递增区间.
解答 解:(1)∵$y=sin(\frac{π}{6}+2x)+cos2x$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$cos2x=$\sqrt{3}$sin(2x+$\frac{π}{3}$).
(2)根据y=$\sqrt{3}$sin(2x+$\frac{π}{3}$),求得它的最小正周期为$\frac{2π}{2}$=π.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{3}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,
可得它的单调递增区间为:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
点评 本题主要考查三角恒等变换,正弦函数的周期性和单调性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{4}$倍 | B. | $\frac{1}{2}$倍 | C. | $\frac{\sqrt{2}}{2}$倍 | D. | $\sqrt{2}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{a}<\frac{1}{b}$ | B. | $\frac{a}{b}>1$ | C. | |a|>b | D. | ac2>bc2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com