【题目】已知函数,.
(1)讨论函数的单调性;
(2)若,对任意恒成立,求实数的取值范围.
【答案】(1)答案见解析;(2).
【解析】试题分析:(1)对函数求导研究函数的单调性,通过导函数的正负得到原函数的单调区间;(2)对任意恒成立,即对任意恒成立,令,对这个函数求导研究函数的单调性,使得最值大于0即可.
解析;
(1),定义域
所以.
讨论:
当时,对或,成立,
所以函数在区间,上均是单调递增;
当时,对或,成立,
所以函数 在区间,上均是单调递减;
当时,函数是常函数,无单调性.
(2)若,对任意恒成立,即对任意恒成立.
令,则.
讨论:
①当,即时,且不恒为0,
所以函数在区间单调递增.
又,所以对任意恒成立.
故符合题意
②当时,令得;令,得.
所以函数在区间上单调递减,在区间上单调递增,
所以,即当时,存在,使.
故知对任意不恒成立,故不符合题意.
综上实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):
空气质量指数 | ||||||
空气质量等级 | 1级优 | 2级良 | 3级轻度污染 | 4级中度污染 | 5级重度污染 | 6级严重污染 |
该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?
(Ⅱ)已知空气质量等级为1级时不需要净化空气,空气质量等级为2级时每天需净化空气的费用为1000元,空气质量等量等级为3级时每天需净化空气的费用为2000元.若从这10天样本中空气质量为1级、2级、3级的天数中任意抽取两天,求这两天的净化空气总费用为3000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表:
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程,其中=,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn=,若{bn}的前n项和为Tn,证明:Tn<.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第一步或最后一步,程序实施时必须相邻,请问实验顺序的编排方法共有 ( )
A. 种 B. 种 C. 种 D. 种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于x的不等式e2x﹣alnxa恒成立,则实数a的取值范围是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为 ,过点且斜率为的直线交曲线于两点,交圆于两点(两点相邻).
(Ⅰ)若,当时,求的取值范围;
(Ⅱ)过两点分别作曲线的切线,两切线交于点,求与面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某船在海面处测得灯塔在北偏东方向,与相距海里,测得灯塔在北偏西方向,与相距海里,船由向正北方向航行到处,测得灯塔在南偏西方向,这时灯塔与相距多少海里?在的什么方向?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,直线:,直线:.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.
(1)求直线,的直角坐标方程以及曲线的参数方程;
(2)已知直线与曲线交于,两点,直线与曲线交于,两点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com