精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2-2mx+2-m.
(I)若不等式f(x)≥x-mx在R上恒成立,求实数m的取值范围;
(II)记A={y|y=f(x),0≤x≤1},且A⊆[0,+∞],求实数m的最大值.

解:(I)由题意可得 x2-2mx+2-m≥x-mx在R上恒成立,即 x2 -(m+1)x+2-m≥0恒成立,
∴△=(m+1)2-4(2-m)≤0,解得-7≤m≤1,
故实数m的取值范围为[-7,1].
(II)由题意可得,A={y|y=f(x),0≤x≤1}={y|y≥0 在[0,1]上恒成立},
即x2-2mx+2-m≥0 在[0,1]上恒成立.
当m<0时,y=f(x)=x2-2mx+2-m在[0,1]上的最小值为f(0)=2-m≥0,m≤2.
当 0≤m≤1时,y=f(x)=x2-2mx+2-m在[0,1]上的最小值为f(m)=2-m-m2≥0,解得-2≤m≤1,
故此时0≤m≤1.
当m>1时,y=f(x)=x2-2mx+2-m在[0,1]上的最小值为f(1)=-3m+3≥0,m≤1.
故此时m的值不存在.
综上,实数m的取值范围为(-∞,1],
故实数m的最大值为1.
分析:(I)由题意可得 x2-2mx+2-m≥x-mx在R上恒成立,即 x2 -(m+1)x+2-m≥0恒成立,由判别式小于或等于零求得实数m的取值范围.
(II)由题意可得x2-2mx+2-m≥0 在[0,1]上恒成立,分m<0、0≤m≤1、m>1三种情况分别求出实数m的取值范围,再去并集,即得所求.
点评:本题主要考查求二次函数在闭区间上的最值,求函数的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案