精英家教网 > 高中数学 > 题目详情

已知集合,若该集合具有下列性质的子集:每个子集至少含有2个元素,且每个子集中任意两个元素之差的绝对值大于1,则称这些子集为子集,记子集的个数为
(1)当时,写出所有子集;
(2)求
(3)记,求证:

(1);(2)133;(3)详见解析

解析试题分析:(1)当子集中只含有2个元素时,含1时,另一个元素只能是3或4或5;含2时另一个元素只能是4或5;含3时另一个元素只能是5;当子集中含3个元素时只能是1、3、5这三个元素。(2)应先求关于 的解析式:子集可分为两类:第一类子集中不含有,相当于子集个数;第二类子集中含有则肯定不含,相当于子集个数的单元素与元素构成的集合数,即,分析可知,则可求。(3)可用错位相减法证明。
解:(1)当时,所以子集:
(2)子集可分为两类:第一类子集中不含有,这类子集有个;
第二类子集中含有,这类子集成为子集与的并,或的单元素子集与的并,共有个.
所以
因为
所以
(3)因为,   ①
所以   ②
②得






所以
考点:新概念问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

数列中,,其通项公式=                

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数,且按某种顺序排列成等差数列.
(1)求实数的值;
(2)若等差数列的首项和公差都为,等比数列的首项和公比都为,数列的前项和分别为,且,求满足条件的自然数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前三项分别为,(其中为正常数)。设
(1)归纳出数列的通项公式,并证明数列不可能为等比数列;
(2)若=1,求的值;
(3)若=4,试证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2, ,am和正数b1,b2, ,
bm,使a,a1,a2, ,am,b是等差数列,a,b1,b2, ,bm,b是等比数列.
(1)若m=5,,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此时m的值;
(3)求证:an>bn(n∈N*,n≤m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在公差不为0的等差数列中,,且成等比数列.
(1)求的通项公式;
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知an=n×0.8n(n∈N*).
(1)判断数列{an}的单调性;
(2)是否存在最小正整数k,使得数列{an}中的任意一项均小于k?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察下列三角形数表,假设第n行的第二个数为an(n≥2,n∈N*).

(1)依次写出第六行的所有6个数;
(2)归纳出an+1an的关系式并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为,满足:.递增的等比数列项和为,满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列,均有成立,求

查看答案和解析>>

同步练习册答案