精英家教网 > 高中数学 > 题目详情

【题目】已知以点为圆心的圆过点线段的垂直平分线交圆于点,

(1)求直线的方程; (2)求圆的方程。

(3)设点在圆上,试探究使的面积为 8 的点共有几个?证明你的结论

【答案】(1);(2);(3)2

【解析】分析:(1)根据直线是线段的垂直平分线的方程,求出线段中点坐标和直线的斜率,即可解直线的方程;

(2)设圆心,则由上得又直径,求得,分别代入,即可求解圆的方程;

(3),由三角形的面积公式,得点到直线的距离,再由圆心到直线的距离得圆的半径,进而得到面积结论.

详解:(1)∵的中点坐标为

∴直线的方程为:

(2)设圆心,则由上得

又直径,∴

①代入②消去,解得

,当∴圆心

∴圆的方程为:

(3)∵

∴当面积为 8 时,点到直线的距离为

又圆心到直线的距离为,圆的半径,且

∴圆上共有两个点,使的面积为 8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=cosx的图象与直线x= ,x= 以及x轴所围成的图形的面积为a,则(x﹣ )(2x﹣ 5的展开式中的常数项为(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 过坐标原点 ,圆 的方程为
(1)当直线 的斜率为 时,求 与圆 相交所得的弦长;
(2)设直线 与圆 交于两点 ,且 的中点,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的顶点在原点 ,对称轴是 轴,且过点 .
(Ⅰ)求抛物线 的方程;
(Ⅱ)已知斜率为 的直线 轴于点 ,且与曲线 相切于点 ,点 在曲线 上,且直线 轴, 关于点 的对称点为 ,判断点 是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与y轴交于O,A两点,圆C2过O,A两点,且直线C2O与圆C1相切;

(1)求圆C2的方程;

(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在求出定点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,若函数 在x=1处与直线 相切.
(Ⅰ)求实数a,b的值;
(Ⅱ)求函数 上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点在单位圆上的 中,角 的对边分别为 ,且 .
(1)求 的值;
(2)若 ,求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)若对 ,f(x) 恒成立,求a的取值范围;
(2)已知常数a R,解关于x的不等式f(x) .

查看答案和解析>>

同步练习册答案