已知函数f(x)=lnx-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.
(1)单调增区间是,单调减区间是(2)当0<a<ln2时,最小值是-a;当a≥ln2时,最小值是ln2-2a.
【解析】①知函数解析式求单调区间,实质是求f′(x)>0,f′(x)<0的解区间,并注意定义域;
②先研究f(x)在[1,2]上的单调性,再确定最值是端点值还是极值;
③由于解析式中含有参数a,要对参数a进行分类讨论.
规范解答:【解析】
(1)f′(x)=-a(x>0).(1分)
①当a≤0时,f′(x)=-a≥0,即函数f(x)的单调增区间是(0,+∞).(3分)
②当a>0时,令f′(x)=-a=0,得x=,当0<x< 时,f′(x)=>0,当x> 时,f′(x)=<0,所以函数f(x)的单调增区间是,单调减区间是.(6分)
(2)①当≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,
所以f(x)的最小值是f(2)=ln2-2a.(8分)
②当≥2,即0<a≤时,函数f(x)在区间[1,2]上是增函数,
所以f(x)的最小值是f(1)=-a.(10分)
③当1< <2,即<a<1时,函数f(x)在区间上是增函数,在区间上是减函数,
又f(2)-f(1)=ln2-a,
所以当<a<ln2时,最小值是f(1)=-a;
当ln2≤a<1时,最小值是f(2)=ln2-2a.(12分)
综上可知,当0<a<ln2时,最小值是-a;
当a≥ln2时,最小值是ln2-2a.(14分)
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第13课时练习卷(解析版) 题型:解答题
某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)).
(1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);
(2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第13课时练习卷(解析版) 题型:填空题
某商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系为P=且该商品的日销售量Q与时间t(天)的函数关系为Q=-t+40(0<t≤30,t∈N),则这种商品日销量金额最大的一天是30天中的第________天.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第12课时练习卷(解析版) 题型:填空题
如果关于x的方程ax+=3在区间(0,+∞)上有且仅有一个解,那么实数a的取值范围为________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第12课时练习卷(解析版) 题型:解答题
若函数f(x)=-+blnx在(1,+∞)上是减函数,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第12课时练习卷(解析版) 题型:填空题
函数f(x)=x3-15x2-33x+6的单调减区间为______________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第11课时练习卷(解析版) 题型:填空题
一个物体的运动方程为s=1-t+t2,其中s的单位是m,t的单位是s,那么物体在3s末的瞬时速度是_______m/s.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com