精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.
(Ⅰ)若 ,求证:直线l恒过定点,并求出定点坐标;
(Ⅱ)若直线l与曲线C1相切,M(1,0),求 的取值范围.

【答案】解:(Ⅰ)由已知,可设l:x=my+n,A(x1,y1),B(x2,y2

得:y2﹣4my﹣4n=0,

∴y1+y2=4m,y1y2=﹣4n.

∴由 可得:

解得:n=2.

∴l:x=my+2,

∴直线l恒过定点(2,0).

(Ⅱ)∵直线l与曲线C1相切,M(1,0),显然n≥3,

整理得:4m2=n2﹣2n﹣3.①

由(Ⅰ)及①可得:

,即 的取值范围是(﹣∞,﹣8]


【解析】(Ⅰ)设A(x1,y1),B(x2,y2)代入到 ,求得x1x2+y1y2=﹣4,即n2﹣4n=﹣4,由此求得n=2.根据点A表示出AB的直线方程整理可知过定点(2,0),综合结论可得.(Ⅱ)由直线与圆相切的性质可得 ,变形可得4m2=n2﹣2n﹣3,结合(1)的方程可得 ,由根与系数的关系分析可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)的函数f(x),其导函数为f′(x),满足:f(x)>0且 总成立,则下列不等式成立的是(
A.e2e+3f(e)<eπ3f(π)
B.e2e+3f(π)>eπ3f(e)
C.e2e+3f(π)<eπ3f(e)
D.e2e+3f(e)>eπ3f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2cosx在 的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若f(x)﹣f(﹣x)=0有四个不同的根,则m的取值范围是(
A.(0,2e)
B.(0,e)
C.(0,1)
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)= 是奇函数,命题q:函数g(x)=x3﹣x2在区间(0,+∞)上单调递增.则下列命题中为真命题的是(
A.p∨q
B.p∧q
C.¬p∧q
D.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)若C1与C2相交于A、B两点,设点F(1,0),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M: +y2=1,圆C:x2+y2=6﹣a2在第一象限有公共点P,设圆C在点P处的切线斜率为k1 , 椭圆M在点P处的切线斜率为k2 , 则 的取值范围为(
A.(1,6)
B.(1,5)
C.(3,6)
D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.

成绩分组

频数

频率

(160,165]

5

0.05

(165,170]

0.35

(170,175]

30

(175,180]

20

0.20

(180,185]

10

0.10

合计

100

1


(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?

查看答案和解析>>

同步练习册答案