精英家教网 > 高中数学 > 题目详情

【题目】已知命题;命题关于的方程有两个相异实数根.

1)若为真命题,求实数的取值范围;

2)若为真命题,为假命题,求实数的取值范围.

【答案】1;(2.

【解析】

试题首先结合对数函数二次函数性质求解命题p,q为真命题时的m的取值范围,(1)中由为真命题可知pq真,由此解不等式可求得实数的取值范围;(2)中为真命题,为假命题可知两命题一真一假,分两种情况可分别求得m的取值范围

试题解析:令,则[0,2]上是增函数,

故当时,最小值为,故若为真,则. ……2

时,方程有两相异实数根,

……4

1)若为真,则实数满足

即实数的取值范围为……8

2)若为真命题,为假命题,则一真一假,

假,则实数满足

真,则实数满足.

综上所述,实数的取值范围为. ……12[来源:&

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的单调减区间;

(2)若关于x的不等式恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字12345.有如下两种方案可供选择:

方案一:一次性抽取两球,若颜色相同,则获得奖品;

方案二:依次有放回地抽取两球,若数字之和大于5,则获得奖品.

1)写出按方案一抽奖的试验的所有基本事件;

2)哪种方案获得奖品的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知椭圆经过点,且其左右焦点的坐标分别是.

1)求椭圆的离心率及标准方程;

2)设为动点,其中,直线经过点且与椭圆相交于两点,若的中点,是否存在定点,使恒成立?若存在,求点的坐标;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为了测量某湿地两点间的距离,观察者找到在同一直线上的三点.从点测得,从点测得,从点测得.若测得(单位:百米),则两点的距离为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,ABCD为梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=

(I)点E在线段PB上,满足CE//平面PAD,求的值。

(II)已知AC与BD的交点为M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5.圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).

(1)求圆弧C2的方程.

(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.

(Ⅰ)求底面积,并用含x的表达式表示池壁面积;

(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

同步练习册答案