精英家教网 > 高中数学 > 题目详情

【题目】已知圆,一动直线l过与圆相交于.两点,中点,l与直线m:相交于.

(1)求证:当l与m垂直时,l必过圆心

(2)当时,求直线l的方程;

(3)探索是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由.

【答案】(1)见解析(2) (3)见解析

【解析】

(1)由圆的方程找出圆心坐标和圆的半径,根据两直线垂直时斜率的乘积为﹣1,由直线m的斜率求出直线l的斜率,根据点A和圆心坐标求出直线AC的斜率,得到直线AC的斜率与直线l的斜率相等,所以得到直线l过圆心;

(2)分两种情况:当直线l与x轴垂直时,求出直线l的方程;当直线l与x轴不垂直时,设直线l的斜率为k,写出直线l的方程,根据勾股定理求出CM的长,然后利用点到直线的距离公式表示出圆心到所设直线l的距离d,让d等于CM,列出关于k的方程,求出方程的解即可得到k的值,写出直线l的方程即可;

(3)根据CMMN,得到等于0,利用平面向量的加法法则化简等于,也分两种情况:当直线l与x轴垂直时,求得N的坐标,分别表示出,求出两向量的数量积,得到其值为常数;当直线l与x轴不垂直时,设出直线l的方程,与直线m的方程联立即可求出N的坐标,分别表示出,求出两向量的数量积,也得到其值为常数.综上,得到与直线l的倾斜角无关.

(1)lm垂直,且,又

所以当lm垂直时,l必过圆心.

(2)①当直线x轴垂直时, 易知符合题意

②当直线x轴不垂直时, 设直线的方程为,即

因为,所以,则由,得

直线. 从而所求的直线的方程为

(3)因为CM⊥MN,

x轴垂直时,易得,则,,

的斜率存在时,设直线的方程为

则由,得 ),

=

综上,与直线l的斜率无关,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】
(1)求 的值;
(2)设mn N* , nm , 求证:
.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知S2=4,an+1=2Sn+1,n∈N*
(1)求通项公式an
(2)求数列{|an﹣n﹣2|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有某高新技术企业年研发费用投入(百万元)与企业年利润(百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:

年科研费用(百万元)

1

2

3

4

5

企业所获利润(百万元)

2

3

4

4

7

(1)画出散点图;

(2)求的回归直线方程;

3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?

参考公式:用最小二乘法求回归方程的系数计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:

3

4

5

6

2.5

3

4

4.5

(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知椭圆两个焦点的坐标分别是 ,并且经过点

(1)求椭圆的标准方程;

(2) 已知是椭圆的左顶点,斜率为的直线交椭圆 两点,

上, ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,的中点.

求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市电视台为了解市民对我市举办的春节文艺晚会的关注情况,组织了一次抽样调查,下面是调查中

的其中一个方面:

按类型用分层抽样的方法抽取份问卷,其中属“看直播”的问卷有份.

(1)求的值;

(2)为了解市民为什么不看的一些理由,用分层抽样的方法从“不看”问卷中抽取一个容量为的样本,将该样本看成一个总体,从中任取份,求至少有份是女性问卷的概率;

(3)现从(2)所确定的总体中每次都抽取1份,取后不放回,直到确定出所有女性问卷为止,记所要抽取的次数为,直接写出的所有可能取值(无需推理).

查看答案和解析>>

同步练习册答案