已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
考点:
导数的几何意义;利用导数研究函数的单调性.
分析:
(Ⅰ)求解析式,只需把a,b,d三个字母求出即可.已知点P(0,2)满足f(x),得到d,又点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0,可以得到f(﹣1)的值,并且得到f(x)在x=﹣1处的导数为6.
(Ⅱ)利用导数研究函数的单调性即可求出函数的单调区间.
解答:
解:(Ⅰ)∵f(x)的图象经过P(0,2),∴d=2,
∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.
∵点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0
∴f'(x)|x=﹣1=3x2+2bx+a|x=﹣1=3﹣2b+a=6①,
还可以得到,f(﹣1)=y=1,即点M(﹣1,1)满足f(x)方程,得到﹣1+b﹣a+2=1②
由①、②联立得b=a=﹣3
故所求的解析式是f(x)=x3﹣3x2﹣3x+2.
(Ⅱ)f'(x)=3x2﹣6x﹣3.,令3x2﹣6x﹣3=0,即x2﹣2x﹣1=0.
解得.当;
当.
故f(x)的单调增区间为(﹣∞,1﹣),(1+,+∞);单调减区间为(1﹣,1+)
点评:
本题主要考查了两个知识点,一是导数的几何意义,二是利用导数研究函数的单调性,属于函数这一内容的基本知识,更应该熟练掌握.
科目:高中数学 来源: 题型:
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
3 |
f′(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:深圳一模 题型:解答题
1 |
3 |
f′(x) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com