精英家教网 > 高中数学 > 题目详情
15.设D是线段BC的中点,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AE}$,则(  )
A.$\overrightarrow{AD}=2\overrightarrow{AE}$B.$\overrightarrow{AD}=4\overrightarrow{AE}$C.$\overrightarrow{AD}=2\overrightarrow{EA}$D.$\overrightarrow{AD}=4\overrightarrow{EA}$

分析 由已知可得$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,结合$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AE}$,进而可得$\overrightarrow{AD}$=2$\overrightarrow{AE}$.

解答 解:∵D是线段BC的中点,
∴$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,
∵$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AE}$,
∴$\overrightarrow{AD}$=2$\overrightarrow{AE}$,
故选:A

点评 本题考查的知识点是向量在几何中的应用,正确将向量语言翻译成几何语言,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.阅读下面材料,尝试类比探究函数y=x2-$\frac{1}{{x}^{2}}$的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.
阅读材料:
我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.
在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.
对于函数y=$\frac{1}{x}$,我们可以通过表达式来研究它的图象和性质,如:
(1)在函数y=$\frac{1}{x}$中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.
(2)在函数y=$\frac{1}{x}$中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;
(3)在函数y=$\frac{1}{x}$中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(-∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;
(4)由函数y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函数,可以推测出,对应的图象关于原点对称.
结合以上性质,逐步才想出函数y=$\frac{1}{x}$对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},则下列结论正确的是(  )
A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),A,B是C上的动点,且满足OA⊥OB(O为坐标原点),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,点D的极坐标为(-4,$\frac{π}{3}$).
(1)求线段AD的中点M的轨迹E的普通方程;
(2)利用椭圆C的极坐标方程证明$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值,并求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等腰直角三角形.SA=SB=2,AB=2DC,SD=1,BC=$\sqrt{3}$.
(1)证明:SD⊥平面SAB.
(2)求四棱锥S-ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后,所得的图象与原图象重合,则ω的最小值等于(  )
A.$\frac{1}{2}$B.2C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知动点P到点F(1,0)的距离等于它到直线l1:x=-1的距离
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求$\frac{|k|}{|MN|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知$\overrightarrow a=(8,4)$,求与$\overrightarrow a$垂直的单位向量的坐标.
(2)若$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,且$\overrightarrow a$与$\overrightarrow b$的夹角为1200,求$|{\overrightarrow a+\overrightarrow b}|$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从M点测得A点的俯角∠NMA=30°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°;已知山高BC=200m,则山高MN=(  )
A.300mB.200$\sqrt{2}$mC.200$\sqrt{3}$mD.300$\sqrt{2}$m

查看答案和解析>>

同步练习册答案