精英家教网 > 高中数学 > 题目详情

已知是等差数列,其中,前四项和
(1)求数列的通项公式an; 
(2)令,①求数列的前项之和
是不是数列中的项,如果是,求出它是第几项;如果不是,请说明理由。

(1);(2)①,②不是数列中的项。

解析试题分析:(1)利用等差数列前项和公式结合已知条件求出公差;(2)①由(1)知,又为等差数列,为等比数列,故用错位相减求和,②令,即,转化为研究该方程有没有整数解的问题。
(1)
(2)①由(1)知


两式错位相减得:
②令,整理得
,易知在R上单调递增,
,所以有唯一零点,不是整数,
不是数列中的项。
考点:(1)利用等差数列前项和公式的应用;(2)错位相减进行数列求和;(3)构造函数研究方程根的个数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等差数列的前项和为,且.
(1)数列满足:求数列的通项公式;
(2)设求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)函数的零点从小到大排列,记为数列,求的前项和
(2)若上恒成立,求实数的取值范围;
(3)设点是函数图象的交点,若直线同时与函数的图象相切于点,且
函数的图象位于直线的两侧,则称直线为函数的分切线.
探究:是否存在实数,使得函数存在分切线?若存在,求出实数的值,并写出分切线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,数列满足:,已知对任意都成立
(1)求的值
(2)设数列的前项的和为,问是否存在互不相等的正整数,使得成等差数列,且成等比数列?若存在,求出;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求d,an
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在等比数列中,.
(1)求
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}的前项和为,且满足
(1)求证:{}是等差数列;
(2)求表达式;
(3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的三个内角成等差数列,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n项和.

查看答案和解析>>

同步练习册答案